首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf area index (LAI) is a key vegetation biophysical parameter and is extensively used in modelling of phenology, primary production, light interception, evapotranspiration, carbon, and nitrogen dynamics. In the present study, we attempt to spatially characterize LAI for natural forests of Western Ghats India, using ground based and Landsat-8 Operational Land Imager (OLI) sensor satellite data. For this, 41 ground-based LAI measurements were carried out across a gradient of tropical forest types, viz. dry, moist, and evergreen forests using LAI-2200 plant canopy analyser, during the month of March 2015. Initially, measured LAI values were regressed with 15 spectral variables, including nine spectral vegetation indices (SVIs) and six Landsat-8 surface reflectance (ρ) variables using univariate correlation analysis. Results showed that the red (ρred), near-infrared (ρNIR), shortwave infrared (ρSWIR1, ρSWIR2) reflectance bands (R2 > 0.6), and all SVIs (R2 > 0.7) except simple ratio (SR) have the highest and second highest coefficient of determination with ground-measured LAI. In the second step, to select significant (high R2, low root mean square error (RMSE), and p-level < 0.05) SVIs to determine the best representative model, stepwise multiple linear regression (SMLR) was implemented. The results indicate that the SMLR model predicted LAI with better coefficient of determination (R2 = 0.83, RMSE = 0.78) using normalized difference vegetation index, enhanced vegetation index, and soil-adjusted vegetation index variables compared to the univariate approach. The predicted SMLR model was used to estimate a spatial map of LAI. It is desirable to evaluate the stability and potentiality of regional LAI models in natural forest ecosystems against the operationally accepted Moderate Resolution Imaging Spectroradiometer (MODIS) global LAI product. To do this, the Landsat-8 pixel-based LAI map was resampled to 1 km resolution and compared with the MODIS derived LAI map. Results suggested that Landsat-8 OLI-based VIs provide significant LAI maps at moderate resolution (30 m) as well as coarse resolution (1 km) for regional climate models.  相似文献   

2.
Boreal forests in the northern hemisphere provide important sinks for storing carbon dioxide (CO2). However, the size and distribution of these sinks remain uncertain. In particular, many remote-sensing models show a strong bias in the simulation of carbon fluxes for evergreen needleleaf forest. The objective of this study is to improve these predictive models for accurately quantifying temporal changes in the net ecosystem exchange (NEE) of conifer-dominated forest solely based on satellite remote sensing, including the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra daytime land-surface temperature (LST), night-time LST′, enhanced vegetation index (EVI), land–surface water index (LSWI), fraction of absorbed photosynthetically active radiation (FPAR), and leaf area index (LAI). Considering that the component fluxes, gross primary production (GPP), and ecosystem respiration (Re), are strongly influenced by vegetation phenology, seasonality information was extracted from time-series MODIS EVI data based on non-linear least-squares fits of asymmetric Gaussian model functions with a software package for analysing the time-series of satellite sensor data (TIMESAT). The results indicated that models directly incorporating phenological information failed to improve their performance for temperate deciduous forest. Instead, three methods to retrieve the component fluxes – GPP and Re – including direct estimates, models incorporating the phenological information, and models developed based on the threshold value (LST 273 K), were explored respectively. All methods improved NEE estimates markedly and models developed based on the threshold value performed best, and provided a future framework for accurate remote sensing of NEE in evergreen forest.  相似文献   

3.
Two promising techniques for estimating Leaf Area Index (LAI) using remote sensing are Linear Spectral Mixture Analysis (LSMA) and Modification of Spectral Vegetation Indices (MSVI). The Normalized Distance Method (ND), which uses principles employed by the LSMA and MSVI techniques, is introduced in this study. These three methods are applied to a region of montane forest in Kananaskis Country, Alberta, Canada, in order to estimate LAI. In situ measurements of LAI in 10 deciduous and 10 coniferous plots, and a SPOT‐4 image taken at the height of the growing season, provided test data that produced relationships for LAI in pure stands of either coniferous or deciduous vegetation using each of the three methods. All methods exhibited varying degrees of performance and demonstrated significant dependence on vegetation type. The ND method produced relationships with coefficients of determination (R 2) of 0.86 and 0.65 for coniferous and deciduous vegetation, respectively; the MSVI method (when using the adjusted Normalized Difference Vegetation Index) produced relationships with R 2 values of 0.79 and 0.59 for coniferous and deciduous vegetation, respectively; and the LSMA technique produced relationships with R 2 values of 0.83 and 0.0 for coniferous and deciduous vegetation, respectively.  相似文献   

4.
The leaf area index (LAI) and the clumping index (CI) provide valuable insight into the spatial patterns of forest canopies, the canopy light regime and forest productivity. This study examines the spatial patterns of LAI and CI in a boreal mixed-wood forest, using extensive field measurements and remote sensing analysis. The objectives of this study are to: (1) examine the utility of airborne lidar (light detection and ranging) and hyperspectral data to model LAI and clumping indices; (2) compare these results to those found from commonly used Landsat vegetation indices (i.e. the normalized difference vegetation index (NDVI) and the simple ratio (SR)); (3) determine whether the fusion of lidar data with Landsat and/or hyperspectral data will improve the ability to model clumping and LAI; and (4) assess the relationships between clumping, LAI and canopy biochemistry.

Regression models to predict CI were much stronger than those for LAI at the site. Lidar was the single best predictor of CI (r 2 > 0.8). Landsat NDVI and SR also had a moderately strong predictive performance for CI (r 2 > 0.68 with simple linear and non-linear regression forms), suggesting that canopy clumping can be predicted operationally from satellite platforms, at least in boreal mixed-wood environments. Foliar biochemistry, specifically canopy chlorophyll, carotenoids, magnesium, phosphorus and nitrogen, was strongly related to the clumping index. Combined, these results suggest that Landsat models of clumping could provide insight into the spatial distribution of foliar biochemistry, and thereby photosynthetic capacity, for boreal mixed-wood canopies. LAI models were weak (r 2 < 0.4) unless separate models were used for deciduous and coniferous plots. Coniferous LAI was easier to model than deciduous LAI (r 2 > 0.8 for several indices). Deciduous models of LAI were weaker for all remote sensing indices (r 2 < 0.67). There was a strong, linear relationship between foliar biochemistry and LAI for the deciduous plots. Overall, our results suggest that broadband satellite indices have strong predictive performance for clumping, but that airborne hyperspectral or lidar data are required to develop strong models of LAI at this boreal mixed-wood site.  相似文献   

5.
We examined the relationship between the spatio-temporal distribution of leaf litter for each species and the seasonal patterns of in situ and satellite-observed daily vegetation indices in a cool-temperate deciduous broad-leaved forest. The timing and distribution of leaf-fall revealed spatio-temporal relationships with species and topography. Values of the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and green–red vegetation index (GRVI), measured both in situ and by satellite, and those of the in situ-measured leaf area index (LAI), rapidly declined at the peak of leaf-fall. At the late stage of leaf-fall, in situ-measured values of NDVI, EVI, and LAI declined but those of GRVI changed from decreasing to increasing. The peak timing of leaf-fall, when 50–73% of the leaf litter had fallen, corresponds to LAI = 1.80–0.81, NDVI = 0.61–0.54, EVI = 0.29–0.25, and GRVI = 0.01 ~ ?0.07. Although the distribution of leaf litter among species displayed spatial characteristics at the peak of leaf-fall, spatial heterogeneity of amount of leaf litter at the peak timing of leaf-fall was less than that at the beginning and end. These facts suggest that the criterion for determining the timing of leaf-fall from vegetation indices should be a value corresponding to the peak of leaf-fall rather than its end. In a high-biodiversity forest, such as this study forest, the effect of spatial heterogeneity on the timing and patterns of leaf-fall on vegetation indices can be reduced by observing only the seasonal variation in colour on the canopy surface by using GRVI, which consists of visible reflectance bands, rather than that of both leaf area and colour of the canopy surface by using NDVI and EVI, which consist of visible and near-infrared reflectance bands.  相似文献   

6.
The Differenced Normalized Burn Ratio (ΔNBR) is widely used to map post‐fire effects in North America from multispectral satellite imagery, but has not been rigorously validated across the great diversity in vegetation types. The importance of these maps to fire rehabilitation crews highlights the need for continued assessment of alternative remote sensing approaches. To meet this need, this study presents a first preliminary comparison of immediate post‐fire char (black ash) fraction, as measured by linear spectral unmixing, and ΔNBR, with two quantitative one‐year post‐fire field measures indicative of canopy and sub‐canopy conditions: % live tree and dry organic litter weight (gm?2). Image analysis was applied to Landsat 7 Enhanced Thematic Mapper (ETM+) imagery acquired both before and immediately following the 2000 Jasper Fire, South Dakota. Post‐fire field analysis was conducted one‐year post‐fire. Although the immediate post‐fire char fraction (r 2 = 0.56, SE = 28.03) and ΔNBR (r 2 = 0.55, SE = 29.69) measures produced similarly good predictions of the % live tree, the standard error in the prediction of litter weight with the char fraction method (r 2 = 0.55, SE = 4.78) was considerably lower than with ΔNBR (r 2 = 0.52, SE = 8.01). Although further research is clearly warranted to evaluate more field measures, in more fires, and across more fire regimes, the char fraction may be a viable approach to predict longer‐term indicators of ecosystem recovery and may potentially act as a surrogate retrospective measure of the fire intensity.  相似文献   

7.
Leaf area index (LAI) is a key parameter of atmosphere–vegetation exchanges, affecting the net ecosystem exchange and the productivity. At regional or continental scales, LAI can be estimated by remotely‐sensed spectral vegetation indices (SVI). Nevertheless, relationships between LAI and SVI show saturation for LAI values greater than 3–5. This is one of the principal limitations of remote sensing of LAI in forest canopies. In this article, a new approach is developed to determine LAI from the spatial variability of radiometric data. To test this method, in situ measurements for LAI of 40 stands, with three dominant species (European beech, oak and Scots pine) were available over 5 years in the Fontainebleau forest near Paris. If all years and all species are pooled, a good linear relationship without saturation is founded between average stand LAI measurements and a model combining the logarithm of the standard deviation and the skewness of the normalized difference vegetation index (NDVI) (R 2 = 0.73 rmse = 1.08). We demonstrate that this relation can be slightly improved by using different linear models for each year and each species (R 2 = 0.82 rmse = 0.86), but the standard deviation is less sensitive to the species and the year effects than the mean NDVI and is therefore a performing index.  相似文献   

8.
Satellite data offer unrivaled utility in monitoring and quantifying large scale land cover change over time. Radiometric consistency among collocated multi-temporal imagery is difficult to maintain, however, due to variations in sensor characteristics, atmospheric conditions, solar angle, and sensor view angle that can obscure surface change detection. To detect accurate landscape change using multi-temporal images, we developed a variation of the pseudoinvariant feature (PIF) normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on June 9, 1990 (Landsat 4), June 20, 2000 (Landsat 7), and August 26, 2001 (Landsat 7) to analyze boreal forests near the Siberian city of Krasnoyarsk using the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and reduced simple ratio (RSR). The temporally invariant cluster (TIC) centers were identified via a point density map of collocated pixel VIs from the base image and the target image, and a normalization regression line was created to intersect all TIC centers. Target image VI values were then recalculated using the regression function so that these two images could be compared using the resulting common radiometric scale. We found that EVI was very indicative of vegetation structure because of its sensitivity to shadowing effects and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. Conversely, because NDVI reduced the radiometric influence of shadow, it did not allow for distinctions among these vegetation types. After normalization, correlations of NDVI and EVI with forest leaf area index (LAI) field measurements combined for 2000 and 2001 were significantly improved; the r2 values in these regressions rose from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI “cancellation effect” where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a post fire chronosequence with normalized data. These findings indicate that the TIC method provides a simple, effective and repeatable method to create radiometrically comparable data sets for remote detection of landscape change. Compared to some previous relative radiometric normalization methods, this new method does not require high level programming and statistical skills, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare. While this normalization method allowed detection of a range of land use, land cover, and phenological/biophysical changes in the Siberian boreal forest region studied here, it is necessary to further examine images representing a wide variety of ecoregions to thoroughly evaluate the TIC method against other normalization schemes.  相似文献   

9.
On the relationship of NDVI with leaf area index in a deciduous forest site   总被引:7,自引:0,他引:7  
Numerous studies have reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI), but the seasonal and annual variability of this relationship has been less explored. This paper reports a study of the NDVI-LAI relationship through the years from 1996 to 2001 at a deciduous forest site. Six years of LAI patterns from the forest were estimated using a radiative transfer model with input of above and below canopy measurements of global radiation, while NDVI data sets were retrieved from composite NDVI time series of various remote sensing sources, namely NOAA Advanced Very High Resolution Radiometer (AVHRR; 1996, 1997, 1998 and 2000), SPOT VEGETATION (1998-2001), and Terra MODIS (2001). Composite NDVI was first used to remove the residual noise based on an adjusted Fourier transform and to obtain the NDVI time-series for each day during each year.The results suggest that the NDVI-LAI relationship can vary both seasonally and inter-annually in tune with the variations in phenological development of the trees and in response to temporal variations of environmental conditions. Strong linear relationships are obtained during the leaf production and leaf senescence periods for all years, but the relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of LAI. The NDVI-LAI relationship was found to be poor (R2 varied from 0.39 to 0.46 for different sources of NDVI) when all the data were pooled across the years, apparently due to different leaf area development patterns in the different years. The relationship is also affected by background NDVI, but this could be minimized by applying relative NDVI.Comparisons between AVHRR and VEGETATION NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 2000). However, VEGETATION NDVI data series had some unreasonably high values during beginning and end of each year period, which must be discarded before adjusted Fourier transform processing. MODIS NDVI had values greater than 0.62 through the entire year in 2001, however, MODIS NDVI still showed an “M-shaped” pattern as observed for VEGETATION NDVI in 2001. MODIS enhanced vegetation index (EVI) was the only index that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. The results suggest that a relationship established between the LAI and NDVI in a particular year may not be applicable in other years, so attention must be paid to the temporal scale when applying NDVI-LAI relationships.  相似文献   

10.
Disturbance events such as fire have major effects on forest dynamics, succession and the carbon cycle in the boreal biome. This paper focuses on establishing whether characteristic spatio‐temporal patterns of the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) occur in the initial two years after a fire event in Siberian boreal forests. Time‐series of MODIS fAPAR were used to study post‐fire dynamics during the year of the fire and the following two years. Three forest types (evergreen needle‐leaf, deciduous needle‐leaf and deciduous broadleaf) grouped into three latitudinal regions, ranging from 51° N to 65° N, were studied by analysing a sample of 14 burned areas. For each of the burned areas an adjacent unburned control plot was selected with the aim of separating inter‐annual variations caused by climate from changes in fAPAR behaviour due to a burn. The results suggest that (i) the forest types exhibit characteristic fAPAR change trajectories shortly after the fire, (ii) the differences in the fAPAR trajectories are related to the forest type, (iii) fAPAR changes are not significantly different among the latitudinal regions, and (iv) the limited temporal variability observed among the 3 years of observations indicates that fAPAR varies very little in the initial years after a fire event.  相似文献   

11.
Forests account for more than 23% of China’s total area. As the most important terrestrial ecosystem, forests have tremendous ecological value. However, it remains difficult to classify forest subcategories at the national scale. In this study, a newly developed binary division procedure was used to categorize forest areas, including their spatiotemporal dynamics, during the period 2000–2010. Time-series images acquired using the Moderate Resolution Imaging Spectroradiometer (MODIS), together with auxiliary data on land use, climate zoning, and topography, were utilized. Hierarchical classification and zoning were combined with remote-sensing auto-classification. Based on the forest extent mask, the state-level forest system was divided into four classes and 18 subcategories. The method achieved an acceptable overall accuracy of 73.1%, based on a comparison to the sample points of China’s fourth forest general survey data set. In 2010, the total forest area was 1.755 × 106 km2, and the total area of and shrubs was 4.885 × 105 km2. The total area of woodland increased by 2536.25 km2 during the decade 2000–2010. The shrub subcategories exhibited almost no change during this time period; however, significant changes in forest area occurred in the mountainous region of Northeast China as well as in the hilly regions of Southern China. The main transformations took place in cold-temperate and temperate mountainous deciduous coniferous forest, subtropical deciduous coniferous forest, subtropical evergreen coniferous forest, and temperate and subtropical deciduous broadleaved mixed forests. The binary division procedure proposed herein can be used not only to rapidly classify more forest subcategories and monitor their dynamic changes, but also to improve the classification accuracy compared with global and national land-cover maps.  相似文献   

12.
Considerable controversy is associated with dry season increases in the Enhanced Vegetation Index (EVI), observed using the Moderate Resolution Imaging Spectroradiometer (MODIS), compared with field-based estimates of decreasing plant productivity. Here, we investigate potential causes of intra-annual variability by comparing EVI from mature forest with field-measured Leaf Area Index (LAI) to validate space-based observations. EVI was calculated from 19 nadir and off-nadir Hyperion images in the 2005 dry season, and inspected for consistency with MODIS observations from 2004 to 2009. The objective was to evaluate the possible influence of the view-illumination geometry and of canopy foliage and leaf flush on the EVI. Spectral mixture models were used to evaluate the relationship between EVI and the shade fraction, a measure that varies with pixel brightness. MODIS LAI values were compared with LAI estimated using hemispherical photographs taken in two field campaigns in the dry season. To keep LAI and leaf flush conditions as constant variables and vary solar illumination, we used airborne Hyperspectral Mapper (Hymap) data acquired over mature forest from another region on the same day but with two distinct solar zenith angles (SZA) (29° and 53°). Results showed that intra-annual variability in MODIS and nadir Hyperion EVI in the dry season of tropical forest were driven by solar illumination effects rather than changes in LAI. The reflectance of the MODIS and Hyperion blue, red and near infrared (NIR) bands was higher at the end of the dry season because of the predominance of sunlit canopy components for the sensors due to decreasing SZA from June (44°) to September (26°). Because EVI was highly correlated with the reflectance of the NIR band used to generate it (r of + 0.98 for MODIS and + 0.88 for Hyperion), this vegetation index followed the general NIR pattern, increasing with smaller SZA towards the end of the dry season. Hyperion EVI was inversely correlated with the shade fraction (r = − 0.93). Changes in canopy foliage detected from MODIS LAI data were not consistent with LAI estimates from hemispherical photographs. Although further research is necessary to measure the impact of leaf flush on intra-annual EVI variability in the Querência region, analysis of Hymap data with fixed LAI and leaf flush conditions confirmed the influence of the illumination effects on the EVI.  相似文献   

13.
The results of the first consecutive 12 months of the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) global burned area product are presented. Total annual and monthly area burned statistics and missing data statistics are reported at global and continental scale and with respect to different land cover classes. Globally the total area burned labeled by the MODIS burned area product is 3.66 × 106 km2 for July 2001 to June 2002 while the MODIS active fire product detected for the same period a total of 2.78 × 106 km2, i.e., 24% less than the area labeled by the burned area product. A spatio-temporal correlation analysis of the two MODIS fire products stratified globally for pre-fire leaf area index (LAI) and percent tree cover ranges indicate that for low percent tree cover and LAI, the MODIS burned area product defines a greater proportion of the landscape as burned than the active fire product; and with increasing tree cover (> 60%) and LAI (> 5) the MODIS active fire product defines a relatively greater proportion. This pattern is generally observed in product comparisons stratified with respect to land cover. Globally, the burned area product reports a smaller amount of area burned than the active fire product in croplands and evergreen forest and deciduous needleleaf forest classes, comparable areas for mixed and deciduous broadleaf forest classes, and a greater amount of area burned for the non-forest classes. The reasons for these product differences are discussed in terms of environmental spatio-temporal fire characteristics and remote sensing factors, and highlight the planning needs for MODIS burned area product validation.  相似文献   

14.
Forest leaf area index (LAI), is an important variable in carbon balance models. However, understory vegetation is a recognized problem that limits the accuracy of satellite-estimated forest LAI. A canopy reflectance model was used to investigate the impact of the understory vegetation on LAI estimated from reflectance values estimated from satellite sensor data. Reflectance spectra were produced by the model using detailed field data as input, i.e. forest LAI, tree structural parameters, and the composition, distribution and reflectance of the forest floor. Common deciduous and coniferous forest types in southern Sweden were investigated. A negative linear relationship (r2 = 0.6) was observed between field estimated LAI and the degree of understory vegetation, and the results indicated better agreement when coniferous and deciduous stands were analysed separately. The simulated spectra verified that the impact of the understory on the reflected signal from the top of the canopy is important; the reflectance values varying by up to ± 18% in the red and up to ± 10% in the near infra-red region of the spectra due to the understory. In order to predict the variation in LAI due to the understory vegetation, model inversions were performed where the input spectra were changed between the minimum, average and maximum reflectance values obtained from the forward runs. The resulting variation in LAI was found to be 1.6 units on average. The LAI of the understory could be predicted indirectly from simple stand data on forest characteristics, i.e. from allometric estimates, as an initial step in the process of estimating LAI. It is suggested here that compensation for the effect of the understory would improve the accuracy in the estimates of canopy LAI considerably.  相似文献   

15.
Leaf Area Index (LAI) is an important biophysical parameter necessary to infer vegetation vigour, seasonal vegetation variability and different physiological and biochemical processes of vegetation. Gap fraction analysis has been carried out to estimate plot‐wise LAI. Tropical dry deciduous forests of the study area can be categorized into two prominent phases—growing and senescent phases. Efforts have been made to observe the relationship between ground based LAI values and satellite derived parameters, such as radiance values and also different vegetation indices, namely the Normalized Difference Vegetation Index (NDVI), maximum, minimum, amplitude, sum and radiance NDVI values for both the phases. Multi‐temporal IRS 1C WiFS data have been used. WiFS provides information in two bands: red (0.62–0.68 µm) and near‐infrared (0.77–0.86 µm). All the images from the representative months have been corrected radiometrically and geometrically. NDVI values have been derived for all the representative months. Among various parameters maximum NDVI values showed better relationships with LAI for both the phases. For the growing phase R 2 (coefficient of determination) was 0.79, whereas for the senescent phase it was 0.48. These empirical relationships have been used to estimate LAI at a regional level. The LAI estimate for growing and senescent phases ranged from <1 to 4.25.  相似文献   

16.
Various aspects of global environmental change affect plant photosynthesis, the primary carbon input in ecosystems. Thus, accurate methods of measuring plant photosynthesis are important. Remotely sensed spectral indices can monitor in detail the green biomass of ecosystems, which provides a measure of potential photosynthetic capacity. In evergreen vegetation types, however, such as Mediterranean forests, the amount of green biomass changes little during the growing season and, therefore, changes in green biomass are not responsible for changes in photosynthetic rates in those forests. This study examined the net photosynthetic rates and the diametric increment of stems in a Mediterranean forest dominated by Quercus ilex using three spectral indices (normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and photochemical reflectance index (PRI)) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Average annual EVI accounted for 83% of the variability of the diametric increment of Q. ilex stems over a 10 year period. NDVI was marginally correlated with the diametric increment of stems. This study was the first to identify a significant correlation between net photosynthetic rates and radiation use efficiency at the leaf level using PRI derived from satellite data analysed at the ecosystem level. These results suggest that each spectral index provided different and complementary information about ecosystem carbon uptake in a Mediterranean Q. ilex forest.  相似文献   

17.
Biomass and leaf area index (LAI) are important variables in many ecological and environmental applications. In this study, the suitability of visible to shortwave infrared advanced spaceborne thermal emission and reflection radiometer (ASTER) data for estimating aboveground tree and LAI in the treeline mountain birch forests was tested in northernmost Finland. The biomass and LAI of the 128 plots were surveyed, and the empirical relationships between forest variables and ASTER data were studied using correlation analysis and linear and non‐linear regression analysis. The studied spectral features also included several spectral vegetation indices (SVI) and canonical correlation analysis (CCA) transformed reflectances. The results indicate significant relationships between the biomass, LAI and ASTER data. The variables were predicted most accurately by CCA transformed reflectances, the approach corresponding to the multiple regression analysis. The lowest RMSEs were 3.45 t ha?1 (41.0%) and 0.28 m2m?2 (37.0%) for biomass and LAI respectively. The red band was the band with the strongest correlation against the biomass and LAI. SR and NDVI were the SVIs with the strongest linear and non‐linear relationships. Although the best models explained about 85% of the variation in biomass and LAI, the undergrowth vegetation and background reflectance are likely to affect the observed relationships.  相似文献   

18.
19.
Light use efficiency (LUE) is of great importance for carbon cycle and climate change research. This study presents a new LUE model incorporation of vegetation indices (VIs) and land surface temperature (LST) derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) in Harvard Forest. Three indices, including the normalized difference vegetation index (NDVI), the two-band enhanced vegetation index (EVI2) and the soil-adjusted vegetation index (SAVI), were selected as indicators of forest canopy greenness. A single VI provided moderate estimates of LUE with coefficients of determination (R 2) 0.6219, 0.7094 and 0.7502 for NDVI, EVI2 and SAVI, respectively. Our results demonstrated that canopy LUE was related both to the canopy photosynthesis efficiency and air temperature (R 2?=?0.5634). Therefore, the MODIS LST product was incorporated as a surrogate for monitoring of environmental stresses as the observed relationship between LST and both air temperature (R 2?=?0.8828) and vapour pressure deficit (VPD) (R 2?=?0.6887). The new model in terms of (VI)?×?(Scaled (LST)) provided improved estimates of LUE estimation with R 2 of 0.7349, 0.7561 and 0.7879 for NDVI, EVI2 and SAVI, respectively. The results will be useful for the development of future LUE models based entirely on remote-sensing observations.  相似文献   

20.
Moisture dictates vegetation susceptibility to fire ignition and propagation. Various spectral indices have been proposed for the estimation of equivalent water thickness (EWT), which is defined as the mass of liquid water per unit of leaf surface. However, fire models use live fuel moisture content (LFMC) as a measure of vegetation moisture. LFMC is defined as the ratio of the mass of the liquid water in a leaf over the mass of dry matter, and traditional spectral indices are not as effective as with EWT in capturing LFMC variability. The aim of this research was to explore the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra and Aqua satellites in retrieving LFMC from top of the canopy reflectance, and to develop a new spectral index sensitive to this parameter. All the analyses were based on synthetic canopy spectra constructed by coupling the PROSPECT (leaf optical properties model) and SAIL (Scattering by Arbitrarily Inclined Leaves) radiative transfer models. Simulated top of the canopy spectra were then convolved to MODIS ‘land’ channels 1–7 spectral response functions. All band pairs were evaluated to determine the subspace of MODIS measurements where the separability of points based on their value of LFMC was the highest. This led to the identification of isolines of LFMC in the plane defined by MODIS reflectance measurements in channels 2 and 5; the isolines are straight and parallel, and ordered from lower to higher values of LFMC. This observation allowed the construction of a novel spectral index that is directly related to LFMC – the perpendicular moisture index (PMI). This index measures the distance of a point in the plane spanned by reflectance measurements in MODIS channels 2 and 5 from a reference line, that of completely dry vegetation. Validation against simulated data showed that PMI exhibits a linear relationship with LFMC. When the vegetation cover is dense, the LFMC explains most of the variability in the PMI (R2 = 0.70 when LAI > 2; R2 = 0.87 when LAI > 4). When the LAI is lower, the contribution of soil background to the measured reflectance increases, and the index underestimates LFMC. The PMI was also validated against the LOPEX93 (Leaf Optical Properties Experiment 1993) data set of leaf optical and biophysical measurements, scaled to canopy reflectance with SAIL, showing acceptable results (R2 = 0.56 when LAI > 2; R2 = 0.63 when LAI > 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号