首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optimal trajectory planner for humanoid robots with a haptically controlled arm is proposed. This trajectory planner simultaneously plans time-varying arm wrench constraints, foot step positions, and a Center-of-Mass (COM) trajectory. This system has the useful characteristic of ensuring that the robot does not fall when the human operator commands an excessively large arm wrench and in the long term the resultant arm wrench approaches the desired arm wrench via a combination of changes in the foot positions and the COM position. This is accomplished via a Model Predictive Controller with a Quadratic Programming-based trajectory optimizer that calculates a time series of arm wrench constraints, foot positions and, a COM trajectory that optimizes the criteria of minimizing the tracking error of the desired foot positions and the desired arm wrench. A simulation and experiments demonstrate the validity of the proposed algorithm.  相似文献   

2.
The premise of human–robot collaboration is that robots have adaptive trajectory planning strategies in hybrid work cell. The aim of this paper is to propose a new online collision avoidance trajectory planning algorithm for moderate dynamic environments to insure human safety when sharing collaborative tasks. The algorithm contains two parts: trajectory generation and local optimization. Firstly, based on empirical Dirichlet Process Gaussian Mixture Model (DPGMM) distribution learning, a neural network trajectory planner called Collaborative Waypoint Planning network (CWP-net) is proposed to generate all key waypoints required for dynamic obstacle avoidance in joint space according to environmental inputs. These points are used to generate quintic spline smooth motion trajectories with velocity and acceleration constraints. Secondly, we present an improved Stochastic Trajectory Optimization for Motion Planning (STOMP) algorithm which locally optimizes the generated trajectories of CWP-net by constraining the trajectory optimization range and direction through the DPGMM model. Simulations and real experiments from an industrial use case of human–robot collaboration in the field of aircraft assembly testing show that the proposed algorithm can smoothly adjust the nominal path online and effectively avoid collisions during the collaboration.  相似文献   

3.
This study proposes a new approach for solving the problem of autonomous movement of robots in environments that contain both static and dynamic obstacles. The purpose of this research is to provide mobile robots a collision-free trajectory within an uncertain workspace which contains both stationary and moving entities. The developed solution uses Q-learning and a neural network planner to solve path planning problems. The algorithm presented proves to be effective in navigation scenarios where global information is available. The speed of the robot can be set prior to the computation of the trajectory, which provides a great advantage in time-constrained applications. The solution is deployed in both Virtual Reality (VR) for easier visualization and safer testing activities, and on a real mobile robot for experimental validation. The algorithm is compared with Powerbot's ARNL proprietary navigation algorithm. Results show that the proposed solution has a good conversion rate computed at a satisfying speed.  相似文献   

4.
This paper focusses on the development of a customised mapping and exploration task for a heterogeneous ensemble of mobile robots. Many robots in the team may have limited processing and sensing abilities. This means that each robot may not be able to execute all components of the mapping and exploration task. A hierarchical system is proposed that consists of computationally powerful robots (managers) at the upper level and limited capability robots (workers) at the lower levels. This enables resources (such as processing) to be shared and tasks to be abstracted. The global environment containing scattered obstacles is divided into local environments by the managers for the workers to explore. Worker robots can be assigned planner and/or explorer tasks and are only made aware of information relevant to their assigned tasks.  相似文献   

5.
Applying a path planner based on RRT to cooperative multirobot box-pushing   总被引:1,自引:0,他引:1  
Considering robot systems in the real world, a multirobot system where multiple robots work simultaneously without colliding with each other is more practical than a single-robot system where only one robot works. Therefore, solving the path-planning problem in a multirobot system is very important. In this study, we developed a path-planner based on the rapidly exploring random tree (RRT), which is a data structure and algorithm designed for efficiently searching for multirobot box-pushing, and made experiments in real environments. A path planner must construct a plan which avoids the robot colliding with obstacles or with other robots. Moreover, in some cases, a robot must collaborate with other robots to transport the box without colliding with any obstacles. Our proposed path planner constructs a box-transportation plan and the path plans of each robot bearing the above considerations in mind. Experimental results showed that our proposed planner can construct a multirobot box-pushing plan without colliding with obstacles, and that the robots can execute tasks according to the plan in real environments. We also checked that multiple robots can perform problem tasks when only one robot could not transport the box to the goal. This work was presented in part at the 13th International Symposium on Articifial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

6.
Obstacle avoidance is a significant skill not only for mobile robots but also for robot manipulators working in unstructured environments. Various algorithms have been proposed to solve off-line planning and on-line adaption problems. However, it is still not able to ensure safety and flexibility in complex scenarios. In this paper, a novel obstacle avoidance algorithm is proposed to improve the robustness and flexibility. The method contains three components: A closed-loop control system is used to filter the preplanned trajectory and ensure the smoothness and stability of the robot motion; the dynamic repulsion field is adopted to fulfill the robot with primitive obstacle avoidance capability; to mimic human’s complex obstacle avoidance behavior and instant decision-making mechanism, a parametrized decision-making force is introduced to optimize all the feasible motions. The algorithms were implemented in planar and spatial robot manipulators. The comparative results show the robot can not only track the task trajectory smoothly but also avoid obstacles in different configurations.  相似文献   

7.
针对在复杂、动态的家庭环境下,如何让机器人获取足够多的环境信息并根据环境信息进行自主的任务规划,提出了智能空间技术支持下基于分层任务网络的服务机器人任务规划方案.利用智能空间技术为机器人提供充足的环境上下文信息,用基于分层任务网络设计的JSHOP2规划器执行机器人任务规划.为了提高机器人任务规划的自主性和智能性,在规划领域文件中加入不同的模板信息,使机器人具有根据环境的不同自动对任务进行调整的能力.仿真实验结果表明利用该方法能够有效地提高机器人任务规划的性能.  相似文献   

8.
The manufacturing industry today is still looking for enhancement of their production. Programming of articulated production robots is a major area for improvement. Today, offline simulation modified by manual programming is widely used to reduce production downtimes but requires financial investments in terms of additional personnel and equipment costs. The requirements have been evaluated considering modern manufacturing aspects and a new online robot trajectory planning and programming support system is presented for industrial use. The proposed methodology is executed solely online, rendering offline simulation obsolete and thereby reduces costs. To enable this system, a new cell-based Voronoi generation algorithm, together with a trajectory planner, is introduced. The robot trajectories so achieved are comparable to manually programmed robot programs. The results for a Mitsubishi RV-2AJ five axis industrial robot are presented.  相似文献   

9.
A Neural Network Approach to Dynamic Task Assignment of Multirobots   总被引:1,自引:0,他引:1  
In this paper, a neural network approach to task assignment, based on a self-organizing map (SOM), is proposed for a multirobot system in dynamic environments subject to uncertainties. It is capable of dynamically controlling a group of mobile robots to achieve multiple tasks at different locations, so that the desired number of robots will arrive at every target location from arbitrary initial locations. In the proposed approach, the robot motion planning is integrated with the task assignment, thus the robots start to move once the overall task is given. The robot navigation can be dynamically adjusted to guarantee that each target location has the desired number of robots, even under uncertainties such as when some robots break down. The proposed approach is capable of dealing with changing environments. The effectiveness and efficiency of the proposed approach are demonstrated by simulation studies.  相似文献   

10.
In this paper we will introduce the application of our newly patented double hierarchical Fuzzy-Genetic system (British patent 99-10539.7) to produce an intelligent autonomous outdoor agricultural mobile robot capable of learning and calibrating its controller online in a short time interval and implementing a life long learning strategy. The online and life long learning strategy allow the outdoor robots to increase their experience and adapt their controllers in the face of the changing and dynamic unstructured outdoor agricultural environments. Such characteristics permit prolonged periods of operation within dynamic agricultural environments, which is an essential feature for the realization of a platform vehicle for use in sustainable agriculture and organic farming.  相似文献   

11.
This paper presents a task planner based on decision trees. Two different types of cooperative tasks are described: common task and parallel task. In the first type of task two or more robots are required to accomplish the task. In the second type, several tasks can be performed in parallel by different robots to reduce the total disassembly time. The planner presented is based on a hierarchical representation of the product and performs the distribution of the tasks among robots using decision trees. The system takes into consideration the work area of each robot and its own characteristics. The work cell can be composed of j robotic manipulators. Finally, a practical application of a PC disassembly system is shown.  相似文献   

12.
The firefighting robot system (FFRS) comprises several autonomous robots that can be deployed to fire disasters in petrochemical complexes. For autonomous navigation, the path planner should consider the robot constraints and characteristics. Specifically, three requirements should be satisfied for a path to be suitable for the FFRS. First, the path must satisfy the maximum curvature constraint. Second, it must be smooth for robots to easily execute the trajectory. Third, it must allow reaching the target location in a specific heading. We propose a path planner that provides smooth paths, satisfy the maximum curvature constraint, and allows a suitable robot heading. The path smoother is based on the conjugate gradient descent, and three approaches are proposed for this path planner to meet all the FFRS requirements. The effectiveness of these approaches is qualitatively and quantitatively evaluated by examining the generated paths. Finally, the path planner is applied to an actual robot to verify the suitability of the generated paths for the FFRS, and planning is applied to another type of robot to demonstrate the wide applicability of the proposed planner.  相似文献   

13.
This paper presents a new method for behavior fusion control of a mobile robot in uncertain environments.Using behavior fusion by fuzzy logic,a mobile robot is able to directly execute its motion according to range information about environments,acquired by ultrasonic sensors,without the need for trajectory planning.Based on low-level behavior control,an efficient strategy for integrating high-level global planning for robot motion can be formulated,since,in most applications,some information on environments is prior knowledge.A global planner,therefore,only to generate some subgoal positions rather than exact geometric paths.Because such subgoals can be easily removed from or added into the plannes,this strategy reduces computational time for global planning and is flexible for replanning in dynamic environments.Simulation results demonstrate that the proposed strategy can be applied to robot motion in complex and dynamic environments.  相似文献   

14.
Quadruped robots working in jungles, mountains or factories should be able to move through challenging scenarios. In this paper, we present a control framework for quadruped robots walking over rough terrain. The planner plans the trajectory of the robot's center of gravity by using the normalized energy stability criterion, which ensures that the robot is in the most stable state. A contact detection algorithm based on the probabilistic contact model is presented, which implements event-based state switching of the quadruped robot legs. And an on-line detection of contact force based on generalized momentum is also showed, which improves the accuracy of proprioceptive force estimation. A controller combining whole body control and virtual model control is proposed to achieve precise trajectory tracking and active compliance with environment interaction. Without any knowledge of the environment, the experiments of the quadruped robot SDUQuad-144 climbs over significant obstacles such as 38 cm high steps and 22.5 cm high stairs are designed to verify the feasibility of the proposed method.  相似文献   

15.
Sensor-based trajectory generation of industrial robots can be seen as the task of, first, adaptation of a given robot program according to the actually sensed world, and second, its modification that complies with robot constraints regarding its velocity, acceleration, and jerk. The second task is investigated in this paper. Whenever the sensed trajectory violates a constraint, a transient trajectory is computed that, both, keeps the sensed path, and reaches the sensed trajectory as fast as possible while satisfying the constraints. This is done by an iteration of forward scaling and backtracking. In contrast to previous papers, a new backtracking algorithm and an adaptation of the prediction length are presented that are favorable for high-speed trajectories. Arc Length Interpolation is used in order to improve the path accuracy. This is completed by provisions against cutting short corners or omitting of loops in the given path. The refined trajectory is computed within a single sampling step of 4 ms using a standard KUKA industrial robot.  相似文献   

16.
A Fast Approach for Robot Motion Planning   总被引:1,自引:0,他引:1  
This paper describes a new approach to robot motion planning that combines the end-point motion planning with joint trajectory planning for collision avoidance of the links. Local and global methods are proposed for end-point motion planning. The joint trajectory planning is achieved through a pseudoinverse kinematic formulation of the problem. This approach enables collision avoidance of the links by a fast null-space vector computation. The power of the proposed planner derives from: its speed; the good properties of the potential function for end-point motion planning; and from the simultaneous avoidance of the links collision, kinematic singularities, and local minima of the potential function. The planner is not defined over computationally expensive configuration space and can be applied for real-time applications. The planner shows to be faster than many previous planners and can be applied to robots with many degrees of freedom. The effectiveness of the proposed local and global planning methods as well as the general robot motion planning approach have been experimented using the computer-simulated robots. Some of the simulation results are included in this paper.  相似文献   

17.
In the context of task sharing between a robot companion and its human partners, the notions of safe and compliant hardware are not enough. It is necessary to guarantee ergonomic robot motions. Therefore, we have developed Human Aware Manipulation Planner (Sisbot et al., 2010), a motion planner specifically designed for human–robot object transfer by explicitly taking into account the legibility, the safety and the physical comfort of robot motions. The main objective of this research was to define precise subjective metrics to assess our planner when a human interacts with a robot in an object hand-over task. A second objective was to obtain quantitative data to evaluate the effect of this interaction. Given the short duration, the “relative ease” of the object hand-over task and its qualitative component, classical behavioral measures based on accuracy or reaction time were unsuitable to compare our gestures. In this perspective, we selected three measurements based on the galvanic skin conductance response, the deltoid muscle activity and the ocular activity. To test our assumptions and validate our planner, an experimental set-up involving Jido, a mobile manipulator robot, and a seated human was proposed. For the purpose of the experiment, we have defined three motions that combine different levels of legibility, safety and physical comfort values. After each robot gesture the participants were asked to rate them on a three dimensional subjective scale. It has appeared that the subjective data were in favor of our reference motion. Eventually the three motions elicited different physiological and ocular responses that could be used to partially discriminate them.  相似文献   

18.
Most existing multirobot systems for pattern formation rely on a predefined pattern, which is impractical for dynamic environments where the pattern to be formed should be able to change as the environment changes. In addition, adaptation to environmental changes should be realized based only on local perception of the robots. In this paper, we propose a hierarchical gene regulatory network (H-GRN) for adaptive multirobot pattern generation and formation in changing environments. The proposed model is a two-layer gene regulatory network (GRN), where the first layer is responsible for adaptive pattern generation for the given environment, while the second layer is a decentralized control mechanism that drives the robots onto the pattern generated by the first layer. An evolutionary algorithm is adopted to evolve the parameters of the GRN subnetwork in layer 1 for optimizing the generated pattern. The parameters of the GRN in layer 2 are also optimized to improve the convergence performance. Simulation results demonstrate that the H-GRN is effective in forming the desired pattern in a changing environment. Robustness of the H-GRN to robot failure is also examined. A proof-of-concept experiment using e-puck robots confirms the feasibility and effectiveness of the proposed model.  相似文献   

19.
Creating collision-free trajectories for mobile robots, known as the path planning problem, is considered to be one of the basic problems in robotics. In case of multiple robotic systems, the complexity of such systems increases proportionally with the number of robots, due to the fact that all robots must act as one unit to complete one composite task, such as retaining a specific formation. The proposed path planner employs a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every robot of a team while their formation is kept immutable. The method reacts with obstacle distribution changes and therefore can be used in dynamical or unknown environments, without the need of a priori knowledge of the space. The team is divided into subgroups and all the desired pathways are created with the combined use of a CA path planner and an ACO algorithm. In case of lack of pheromones, paths are created using the CA path planner. Compared to other methods, the proposed method can create accurate collision-free paths in real time with low complexity while the implemented system is completely autonomous. A simulation environment was created to test the effectiveness of the applied CA rules and ACO principles. Moreover, the proposed method was implemented in a system using a real world simulation environment, called Webots. The CA and ACO combined algorithm was applied to a team of multiple simulated robots without the interference of a central control. Simulation and experimental results indicate that accurate collision free paths could be created with low complexity, confirming the robustness of the method.  相似文献   

20.
Compared with a single robot, Multi-robot Systems (MRSs) can undertake more challenging tasks in complex scenarios benefiting from the increased transportation capacity and fault tolerance. This paper presents a hierarchical framework for multi-robot navigation and formation in unknown environments with static and dynamic obstacles, where the robots compute and maintain the optimized formation while making progress to the target together. In the proposed framework, each single robot is capable of navigating to the global target in unknown environments based on its local perception, and only limited communication among robots is required to obtain the optimal formation. Accordingly, three modules are included in this framework. Firstly, we design a learning network based on Deep Deterministic Policy Gradient (DDPG) to address the global navigation task for single robot, which derives end-to-end policies that map the robot’s local perception into its velocity commands. To handle complex obstacle distributions (e.g. narrow/zigzag passage and local minimum) and stabilize the training process, strategies of Curriculum Learning (CL) and Reward Shaping (RS) are combined. Secondly, for an expected formation, its real-time configuration is optimized by a distributed optimization. This configuration considers surrounding obstacles and current formation status, and provides each robot with its formation target. Finally, a velocity adjustment method considering the robot kinematics is designed which adjusts the navigation velocity of each robot according to its formation target, making all the robots navigate to their targets while maintaining the expected formation. This framework allows for formation online reconfiguration and is scalable with the number of robots. Extensive simulations and 3-D evaluations verify that our method can navigate the MRS in unknown environments while maintaining the optimal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号