首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the polishing process, contact force has obvious influence on material removal rate, thus realizing stability and effectiveness of force control is a significant issue for automatic polishing. This paper designs a pneumatic polishing force control system to achieve reliability force control. The system is based on a high speed on/off valve which is controlled by Pulse-Width Modulation (PWM) signals. PWM signals are generated by a Programmable Logic Controller (PLC). Proportion-Integration-Differentiation (PID) control algorithm with moving average filter is conducted in the PLC, thus dynamic property of the system has been improved. The pneumatic system is assembled on a 3-TPS hybrid robot with 5 degrees of freedom (DOF) movement to equip a polishing experimental platform. Polishing force control experiments are conducted on the experimental platform to research the performances and characteristics of the pneumatic polishing force system. According to the experimental results, the pneumatic system presents excellent effectiveness and response speed to track a certain desired polishing force value with small force tracking error. Percentage of absolute average errors are descending as the desired force values is increasing, and settling time is small enough for the polishing manufacture. Therefore, based on the high speed on/off valve, the pneumatic polishing force system proposed in this paper can be conducted in various polishing processes and satisfy special requirements of different workpieces. The polishing force control system can be adjusted to work at an adaptive status due to the excellent effectiveness, stabilization and response speed of force tracking.  相似文献   

2.
Chian-Song  Kuang-Yow  Tsu-Cheng 《Automatica》2004,40(12):2111-2119
In the presence of uncertain constraint and robot model, an adaptive controller with robust motion/force tracking performance for constrained robot manipulators is proposed. First, robust motion and force tracking is considered, where a performance criterion containing disturbance and estimated parameter attenuations is presented. Then the proposed controller utilizes an adaptive scheme and an auxiliary control law to deal with the uncertain environmental constraint, disturbances, and robotic modeling uncertainties. After solving a simple linear matrix inequality for gain conditions, the effect from disturbance and estimated parameter errors to motion/force errors is attenuated to an arbitrary prescribed level. Moreover, if the disturbance and estimated parameter errors are square-integrable, then an asymptotic motion tracking is achieved while the force error is as small as the inversion of control gain. Finally, numerical simulation results for a constrained planar robot illustrate the expected performance.  相似文献   

3.
A robust tracking control design of robot systems including motor dynamics with parameter perturbation and external disturbance is proposed in this study via adaptive fuzzy cancellation technique. A minimax controller equipped with a fuzzy-based scheme is used to enhance the tracking performance in spite of system uncertainties and external disturbance. The design procedure is divided into three steps. At first, a linear nominal robotic control design is obtained via model reference tracking with desired eigenvalue assignment. Next, a fuzzy logic system is constructed and then tuned to eliminate the nonlinear uncertainties as possibly as it can to enhance the tracking robustness. Finally, a minimax control scheme is specified to optimally attenuate the worst-case effect of both the residue due to fuzzy cancellation and external disturbance to achieve a minimax tracking performance. In addition, an adaptive fuzzy-based dynamic game theory is introduced to solve the minimax tracking problem. The proposed method is appropriate for the robust tracking design of robotic systems with large parameter perturbation and external disturbance. A simulation example of a two-link robotic manipulator driven by DC motors is also given to demonstrate the effectiveness of proposed design method's tracking performance  相似文献   

4.
In this paper, a stable adaptive fuzzy-based tracking control is developed for robot systems with parameter uncertainties and external disturbance. First, a fuzzy logic system is introduced to approximate the unknown robotic dynamics by using adaptive algorithm. Next, the effect of system uncertainties and external disturbance is removed by employing an integral sliding mode control algorithm. Consequently, a hybrid fuzzy adaptive robust controller is developed such that the resulting closed-loop robot system is stable and the trajectory tracking performance is guaranteed. The proposed controller is appropriate for the robust tracking of robotic systems with system uncertainties. The validity of the control scheme is shown by computer simulation of a two-link robotic manipulator.  相似文献   

5.
In this paper, a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances. A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function. To improve the tracking control performance, a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot. Using the output of the designed disturbance observer, the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot. Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.   相似文献   

6.
This article presents an adaptive scheme for controlling the end-effector impedance of robot manipulators. The proposed control system consists of three subsystems: a simple “filter” that characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller that produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter. Computer simulation results are given for a planar four degree-of-freedom redundant robot under adaptive impedance control. These results demonstrate that accurate end-effector impedance control and effective redundancy utilization can be achieved simultaneously by using the proposed controller.  相似文献   

7.
The aim of this paper is to design a robust adaptive neural network-based hybrid position/force control scheme for robot manipulators in the presence of model uncertainties and external disturbance. The feedforward neural network employed to learn a highly nonlinear function requires no preliminary learning. The control purposes are to achieve the stability in the sense of Lyapunov for desired interaction force between the end-effector and the environment and to regulate robot tip position in cartesian space. An adaptive compensator is also developed to eliminate the effect of disturbance term of neural network approximation error and external disturbance or unmodeled dynamics etc. A key feature of this compensator is that the prior information of the disturbance bound is not required. Finally, a comparative simulation study with a model-based robust control scheme for a two-link robot manipulator is presented.  相似文献   

8.
Hybrid mobile robots, which combine the advantages of serial and parallel robots and have the ability to realize processing in situ, have considerable application potential in the field of processing and manufacturing. In this paper, a hybrid mobile robot used for wind turbine blade polishing is presented. The robot combines an automated guided vehicle, a 2-DoF robotic arm, and a 3-RCU parallel module. To improve the accuracy, investigating the elasto-geometrical calibration of the robot is necessary. Considering that the 3-RCU parallel module has weak stiffness along the gravitational direction, the stiffness model was established to estimate the deformation caused by the gravity of the mobile platform, ball screws, and motors. Subsequently, a rigid-flexible coupling error model considering structural and stiffness parameter errors is established. Based on these, a parameter identification method for the simultaneous identification of structural and stiffness parameter errors is proposed herein. For the 2-DoF robotic arm with parallelogram mechanisms, an intuitive error model considering the posture error caused by the parallelogram mechanism errors is established. The regularized nonlinear least squares method was adopted for parameter identification. Thereafter, a compensation strategy for the hybrid mobile robot that comprehensively considers the pose errors of the 3-RCU parallel module and 2-DoF robotic arm is proposed. Finally, a verification experiment was performed on the prototype, and the results indicated that after elasto-geometrical calibration, the maximum/mean of the position and posture errors of the hybrid mobile robot decreased from 3.738 mm/2.573 mm to 0.109 mm/0.063 mm and 0.236°/0.179° to 0.030°/0.013°, respectively. Owing to the decrease in the robot pose errors, the quality of the polished surface was more uniform. The range and standard deviation of roughness distribution of the polished surface were reduced from 0.595 μm and 0.248 μm to 0.397 μm and 0.127 μm. The methods proposed herein have reference significance for elasto-geometrical calibration of other parallel or hybrid robots.  相似文献   

9.
In this paper, we consider the problem of force/position tracking for a robot with revolute joints in compliant contact with a kinematically known planar surface. A novel controller is designed capable of guaranteeing, for an a priori known nonsingular initial robot condition, (i) certain predefined minimum speed of response, maximum steady state error as well as overshoot concerning the force/position tracking errors, (ii) contact maintenance and (iii) bounded closed loop signals. No information regarding either the robot dynamic model or the force deformation model is required and no approximation structures are utilized to estimate them. As the tracking performance is a priori guaranteed irrespectively of the control gains selection, the only concern is to adopt those values that lead to reasonable input torques. Finally, a comparative simulation study on a 6-DOF robot illustrates the performance of the proposed controller.  相似文献   

10.
The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.  相似文献   

11.
基于扰动观测器的机器人自适应神经网络跟踪控制研究   总被引:1,自引:0,他引:1  
为解决机器人动力学模型未知问题并提升系统鲁棒性,本文基于扰动观测器,考虑动力学模型未知的情况,设计了一种自适应神经网络(Neural network,NN)跟踪控制器.首先分析了机器人运动学和动力学模型,针对模型已知的情况,提出了刚体机械臂通用模型跟踪控制策略;在考虑动力学模型未知的情况下,利用径向基函数(Radial basis function,RBF)神经网络设计基于全状态反馈的自适应神经网络跟踪控制器,并通过设计扰动观测器补偿系统中的未知扰动.利用李雅普诺夫理论证明所提出的控制策略可以使闭环系统误差信号半全局一致有界(Semi-globally uniformly bounded,SGUB),并通过选择合适的增益参数可以将跟踪误差收敛到零域.仿真结果证明所提出算法的有效性并且所提出的控制器在Baxter机器人平台上得到了实验验证.  相似文献   

12.
为实现对多自由度机械臂关节运动精确轨迹跟踪,提出一种基于非线性干扰观测器的广义模型预测轨迹跟踪控制方法。针对机械臂轨迹跟踪运动学子系统,采用广义预测控制(Generalized Predictive Control,GPC)方法设计期望的虚拟关节角速度。对于机械臂轨迹跟踪动力学子系统,考虑机械臂的参数不确定性和未知外界扰动,利用GPC方法设计关节力矩控制输入,基于非线性干扰观测器方法实时估计和补偿系统模型中的不确定性。在李雅普诺夫稳定性理论框架下证明了机械臂关节角位置和角速度的跟踪误差最终收敛于零的小邻域。数值仿真验证了所提出控制方法的有效性和优越性。  相似文献   

13.
Zhijun  Weidong  Jun 《Neurocomputing》2008,71(7-9):1330-1344
Most studies on the coordination control of multiple mobile manipulators system assume exact knowledge of system dynamics and deal only with motion control. However, actual applications may involve the tasks in which multiple coordinated mobile manipulators system interacts with rigid or non-rigid working surfaces. In this paper, we consider multiple mobile manipulators grasping a rigid object in contact with a deformable working surface, whose geometric and real physical parameters are unknown but boundedness of physical parameters is known. The contact forces are nonlinear and difficult to model. A neuro-adaptive control for coordinated mobile manipulators is proposed for robust force/motion tracking. The control law is based on the philosophy of the parallel approach, in which the control problem is divided into three subspaces and the adaptive techniques are employed to deal with the uncertain environmental constraints, disturbances, and unknown robotic and object dynamics. The proposed adaptive force–motion controller guarantees the tracking errors of motion and force trajectories converge to zero. Simulation examples are presented to verify the effectiveness of the proposed control.  相似文献   

14.
We consider the design of a feedback control law for control systems described by a class of nonlinear differential-algebraic equations so that certain desired outputs track given reference inputs. The nonlinear differential-algebraic control system being considered is not in state variable form. Assumptions are introduced and a procedure is developed such that an equivalent state realization of the control system described by nonlinear differential-algebraic equations is expressed in a familiar normal form. A nonlinear feedback control law is then proposed which ensures, under appropriate assumptions, that the tracking error in the closed loop differential-algebraic system approaches zero exponentially. Applications to simultaneous contact force and position tracking in constrained robot systems with rigid joints, constrained robot systems with joint flexibility, and constrained robot systems with significant actuator dynamics are discussed.  相似文献   

15.
非完整移动机器人道路跟踪控制器设计及应用   总被引:5,自引:0,他引:5       下载免费PDF全文
讨论一类非完整约束条件下的移动机器人道路跟踪控制问题,综合后推方法与模糊滑模控制方法设计非完整移动机器人的状态反馈控制系统,并根据Lyapunov稳定性定理后推设计时变光滑反馈控制律,当存在较大侧向误差时,模糊滑模控制器确保移动机器人沿稳定的工作区域减小误差;当误差比较小时,时变光滑状态反馈控制实现对移动机器人的平稳镇定,采用移动机器人Amigobot作为实验平台,验证了控制器设计的有效性。  相似文献   

16.
This work presents a hybrid position/force control of robots for surface contact conditioning tasks such as polishing, profiling, deburring, etc. The robot force control is designed using sliding mode ideas to benefit from robustness. On the one hand, a set of equality constraints are defined to attain the desired tool pressure on the surface, as well as to keep the tool orientation perpendicular to the surface. On the other hand, inequality constraints are defined to adapt the tool position to unmodeled features present in the surface, e.g., a protruding window frame. Conventional and non-conventional sliding mode controls are used to fulfill the equality and inequality constraints, respectively. Furthermore, in order to deal with sudden changes of the material stiffness, which are forwarded to the robot tool and can produce instability and bad performance, adaptive switching gain laws are considered not only for the conventional sliding mode control but also for the non-conventional sliding mode control. A lower priority tracking controller is also defined to follow the desired reference trajectory on the target surface. Moreover, the classical admittance control typically used in force control tasks is adapted for the proposed surface contact application in order to experimentally compare the performance of both control approaches. The effectiveness of the proposed method is substantiated by experimental results using a redundant 7R manipulator, whereas its advantages over the classical admittance control approach are experimentally shown.  相似文献   

17.
针对具有外部扰动和时滞的非完整轮式移动机器人系统,本文阐述了一种基于非线性扰动观测器的时滞滑模控制方法.首先,利用扰动观测器估计系统的外部扰动;然后,用极坐标转化移动机器人的姿态,并用计算转矩法对机器人的动力学方程进行反馈线性化.设计带时滞控制的滑模,目的是使移动机器人渐近稳定在期望轨迹上,并有效地减小控制增益的过高估计.最后,利用李雅普诺夫函数建立闭环系统的稳定性.仿真结果表明,该方案具有良好的跟踪精度和鲁棒性.  相似文献   

18.
Output regulation of uncertain nonlinear systems with nonlinear exosystems   总被引:2,自引:0,他引:2  
An adaptive control algorithm is proposed for output regulation of uncertain nonlinear systems in output feedback form under disturbances generated from nonlinear exosystems. A new nonlinear internal model is proposed to generate the desired input term for suppression of the disturbances. The proposed internal model design is based on boundedness of the disturbance, high gain design and saturation. It is capable to tackle disturbances in any specified initial conditions. Some uncertainties in the systems are allowed, provided that they do not affect the desired feedforward control term, and they are tackled by using nonlinear dominant functions and an adaptive control coefficient. The proposed control algorithm ensures the global convergence of the state variables to the invariant manifold, which implies that the measurement or the tracking error approaches to zero asymptotically.  相似文献   

19.
The paper addresses the problem of environmental boundary tracking for the nonholonomic mobile robot with uncertain dynamics and external disturbances. To do environmental boundary tracking, a reference velocity is designed for the nonholonomic mobile robot. In this paper, a radial basis function neural network (NN) is used to approximate a nonlinear function containing the uncertain model terms and the elements of the Hessian matrix of the environmental concentration function. Then, the NN approximator is combined with a robust control to construct a robust adaptive NN control for the mobile robot to track the desired environment boundary. It is proved that the tracking error can be guaranteed to converge to zero in the ultimate. Simulation results are presented to illustrate the stability of the robust adaptive control. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
《Advanced Robotics》2013,27(1-2):45-61
This paper proposes a new hybrid adaptive and learning control method based on combining model-based adaptive control, repetitive learning control (RLC) and proportional–derivative control to consider the periodic trajectory tracking problem of robot manipulators. The aim of this study is to obtain a high-accuracy trajectory tracking controller by developing a simpler adaptive dominant-type hybrid controller by using only one vector for estimation of the unknown dynamical parameters in the control law. The RLC input is adopted using the original learning control law, adding a forgetting factor to achieve the convergence of the learning control input to zero. We will improve and prove that the adaptive dominant-type controller could be applied for tracking a periodic desired trajectory in which adaptive control input increases and becomes dominant of the control input, whereas the other control inputs decrease close to zero. The domination of the adaptive control input gives the advantage that the proposed controller could adjust the feed-forward control input immediately and it does not spend much time relearning the learning control input when the periodic desired trajectory is switched over from the first trajectory to another trajectory. We utilize the Lyapunovlike method to prove the stability of the proposed controller and computer simulation results to validate the effectiveness of the proposed controller in achieving the accurate tracking to the periodic desired trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号