首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The Great Lakes Water Quality Agreement (GLWQA) established new Lake Erie phosphorus loading targets, including a 40% total phosphorus load reduction to its western and central basins. The Detroit and Maumee rivers’ loads are roughly equal and contribute about 90% of the load to the western basin and 54% to the whole lake. They are key drivers of central basin hypoxia and western basin algal production. So, accurate estimates of the Detroit River load are important. Direct measurement of that load near its mouth is difficult due to requiring real-time knowledge of flows around islands and the influence of Lake Erie’s seiches. Consequently, most estimates sum the loads to the St. Clair/Detroit River system. But this approach is complicated by uncertainties in the Lake Huron load and load retention in Lake St. Clair. Routine GLWQA reassessments will confirm or adjust over time the goals, loading targets, and approaches based on evolving information. So, there is a need to improve monitoring approaches that ensure accurate Detroit River loads. New approaches should take into account both the characteristics of this dynamic connecting channel and the uses of monitoring results: 1) determining the Detroit River loads to drive models, develop mass balances, set load reduction targets, and track progress; and 2) assessing the sources and processing of the loads to help guide reduction strategies. Herein, we review temporal and spatial variability in the St. Clair/Detroit River system, and suggest adjustments to monitoring that address those variabilities and both uses.  相似文献   

2.
Immigration and emigration of individuals among populations influence population dynamics and are important considerations for managing exploited populations. Lake Huron and Lake Erie walleye (Sander vitreus) populations are managed separately although the interconnecting Huron-Erie Corridor provides an unimpeded passageway. Acoustic telemetry was used to estimate inter-lake exchange and movement within St. Clair River and Detroit River. Of 492 adult walleyes tagged and released during 2011 and 2012, one fish from Tittabawassee River (Lake Huron; 1 of 259, 0.39%) and one individual from Maumee River (Lake Erie; 1 of 233, 0.43%) exchanged lakes during 2011–2014. However, both fish returned to the lake where tagged prior to the next spawning season. The one walleye from Maumee River that moved to Lake Huron made repeated round-trips between Lake Erie and Lake Huron during three consecutive years. Of twelve fish tagged in the Tittabawassee River detected in the Huron-Erie Corridor, few (n = 3) moved south of Lake St. Clair to the Detroit River. Ten walleye tagged in the Maumee River entered the Huron-Erie Corridor, and five were detected in the St. Clair River. Our hypothesis that walleye spawning in Maumee River, Lake Erie, served as a source population to Lake Huron (“sink population”) was not supported by our results. Emigration of walleye to Lake Huron from other populations than the Maumee River, such as those that spawn on in-lake reefs, or from Lake St. Clair may contribute to Lake Huron walleye populations.  相似文献   

3.
Long-term (2001–2015) water quality monitoring data for the St. Clair River are presented with data from studies in the Detroit River in 2014 and 2015 to provide the most complete information available about nutrient concentrations and loadings in the Lake Huron–Lake Erie interconnecting corridor. Concentrations of total phosphorus (TP) in the St. Clair River have reflected declines in Lake Huron. We demonstrate that St. Clair River TP concentrations are higher than offshore Lake Huron values. The recent average (2014 and 2015) incoming TP load from the upstream Great Lakes is measured here to be 980 metric tonnes per annum (MTA), which is roughly three times greater than previous estimates. Significant TP load increases are also indicated along the St. Clair River. We treat the lower Detroit River as three channels to sample water quality as part of a two year monitoring campaign that included winter sampling and SRP in the parameter suite. We found concentrations of many parameters are higher near the shorelines, with the main Mid-River channel resembling water quality upstream measured at the mouth of the St. Clair River. Comparison with past estimates indicates both concentrations and loadings of TP have dramatically declined since 2007 in the Trenton Channel, while those in the Mid-River and in the Amherstburg Channel have remained similar or have possibly increased. The data demonstrate that the TP load exiting the mouth of the Detroit River into Lake Erie is currently in the range of 3740 (in 2014) to 2610 (2015) MTA.  相似文献   

4.
To support the 2012 Great Lakes Water Quality Agreement on reducing Lake Erie's phosphorus inputs, we integrated US and Canadian data to update and extend total phosphorus (TP) loads into and out of the St. Clair-Detroit River System for 1998–2016. The most significant changes were decreased loads from Lake Huron caused by mussel-induced oligotrophication of the lake, and decreased loads from upgraded Great Lakes Water Authority sewage treatment facilities in Detroit. By comparing Lake St. Clair inputs and outputs, we demonstrated that on average the lake retains 20% of its TP inputs. We also identified for the first time that loads from resuspended Lake Huron sediment were likely not always detected in US and Canadian monitoring programs due to mismatches in sampling and resuspension event frequencies, substantially underestimating the load. This additional load increased over time due to climate-induced decreases in Lake Huron ice cover and increases in winter storm frequencies. Given this more complete load inventory, we estimated that to reach a 40% reduction in the Detroit River TP load to Lake Erie, accounting for the missed load, point and non-point sources other than that coming from Lake Huron and the atmosphere would have to be reduced by at least 50%. We also discuss the implications of discontinuous monitoring efforts.  相似文献   

5.
Surficial sediments from southern Lake Huron, Lake St. Clair, and Lake Erie have been analyzed for a broad spectrum of chlorinated organics including PCBs, chlorobenzenes, and several pesticides. The differences between sediment contaminant concentrations in Lake Huron and Lake St. Clair indicated sources of hexachlorobenzene, hexachlorobutadiene, octachlorostyrene, and several other chlorinated benzenes along the St. Clair River. Similar differences between sediment PCB concentrations in Lakes Huron/St. Clair and Lake Erie indicated major PCB sources along the Detroit River. Specific PCB congener analysis revealed that PCBs discharged to the Detroit River contained especially high concentrations of highly chlorinated hexa-, hepta-, and octachloro-biphenyls which are major constituents of the industrial mixture Aroclor 1260. The analysis of individual PCB congeners made it possible to trace PCBs of Detroit River origin to the central and eastern basins of Lake Erie, and to estimate the contribution of the Detroit River to the PCB burden in sediments of these basins.  相似文献   

6.
As a result of increased harmful algal blooms and hypoxia in Lake Erie, the US and Canada revised their phosphorus loading targets under the 2012 Great Lakes Water Quality Agreement. The focus of this paper is the Detroit River and its watershed, a source of 25% of the total phosphorus (TP) load to Lake Erie. Its load declined 37% since 1998, due chiefly to improvements at the regional Great Lakes Water Authority Water Resource Recovery Facility (WRRF) in Detroit and phosphorus sequestered by zebra and quagga mussels in Lake Huron. In addition to the 54% of the load from Lake Huron, nonpoint sources contribute 57% of the TP load and 50% of the dissolved reactive phosphorus load, with the remaining balance from point sources. After Lake Huron, the largest source is the WRRF, which has already reduced its load by over 40%. Currently, loads from Lake Huron and further reductions from the WRRF are not part of the reduction strategy, therefore remaining watershed sources will need to decline by 72% to meet the Water Quality Agreement target - a daunting challenge. Because other urban sources are very small, most of the reduction would have to come from agriculturally-dominated lands. The most effective way to reduce those loads is to apply combinations of practices like cover crops, buffer strips, wetlands, and applying fertilizer below the soil surface on the lands with the highest phosphorus losses. However, our simulations suggest even extensive conservation on those lands may not be enough.  相似文献   

7.
Both abiotic and biotic explanations have been proposed to explain recent recurrent nuisance/harmful algal blooms in the western basin and central basin of Lake Erie. We used two long-term (> 10 years) datasets to test (1) whether Lake Erie total phytoplankton biomass and cyanobacterial biomass changed over time and (2) whether phytoplankton abundance was influenced by soluble reactive phosphorus or nitrate loading from agriculturally-dominated tributaries (Maumee and Sandusky rivers). We found that whereas total phytoplankton biomass decreased in Lake Erie's western basin from 1970 to 1987, it increased starting in the mid-1990s. Total phytoplankton and cyanobacterial seasonal (May–October) arithmetic mean wet-weight biomasses each significantly increased with increased water-year total soluble reactive phosphorus load from the Maumee River and the sum of soluble reactive phosphorus load from the Maumee and Sandusky rivers, but not for the Sandusky River alone during 1996–2006. During this same time period, neither total phytoplankton nor cyanobacterial biomass was correlated with nitrate load. Consequently, recently increased tributary soluble reactive phosphorus loads from the Maumee River likely contributed greatly to increased western basin and (central basin) cyanobacterial biomass and more frequent occurrence of harmful algal blooms. Managers thus must incorporate the form of and source location from which nutrients are delivered to lakes into their management plans, rather than solely considering total (both in terms of form and amount) nutrient load to the whole lake. Further, future studies need to address the relative contributions of not only external loads, but also sources of internal loading.  相似文献   

8.
The gammarid amphipod Echinogammarus ischnus was found to be widespread from the south end of Lake Huron, downstream in the St. Clair River and across Lake Erie to the Niagara River outlet into Lake Ontario. The presence of this exotic species was first reported in the Detroit River, where it now dominates; this species has been common in western Lake Erie since the summer of 1995. The species has replaced the native amphipod Gammarus fasciatus on rocky habitats in the St. Clair, Detroit, and Niagara rivers, and is the dominant amphipod on rocky shores in western Lake Erie. In one year, E. ischnus became the dominant amphipod at the Lake Ontario end of the Welland Canal, although the fecundity of E. ischnus is less than G. fasciatus. E. ischnus has not yet been reported from the north shore of Lake Ontario or the outlet into the St. Lawrence River but occurs 100 km further downstream at Prescott.  相似文献   

9.
The St. Clair-Detroit River System watershed is a large, binational watershed draining into the connecting channel between lakes Huron and Erie. In addition to extensive agricultural lands, it contains large urban areas that discharge phosphorus from point source facilities, runoff of impervious surfaces, and overflows of combined sewers. To help guide actions to reduce phosphorus input to Lake Erie, we analyzed the spatial and temporal dynamics of loads from the three largest urban areas in the watershed (southeast Michigan; Windsor, Ontario; and London, Ontario), and used a previously calibrated storm water management model (SWMM) to explore options for reducing loads around metro Detroit. Point sources in these three urban areas contribute, on average, 81% of the total urban load and 19% of the Detroit River’s total phosphorus (TP) load to Lake Erie, while combined sewer overflows and runoff both contribute about 10% each to the urban load and about 2.5% each to the Detroit River’s load to Lake Erie. Most of the urban load (56%) comes from a single point source, the wastewater treatment facility in Detroit; however, TP loads from that facility have decreased by about 51% since 2008 due to improvements in wastewater treatment. Model simulations suggest that increasing pervious land area or implementing green infrastructure could help reduce combined sewer overflows in certain upper portions of the metro Detroit sewer system, but reductions were much less expressed for wet-weather discharge from the system.  相似文献   

10.
A comparison of the results from macrozoobenthic surveys of the Detroit River (1968 and 1980) showed spatial and temporal differences in the types and distribution of organisms recovered. Similar comparisons were also made from studies of the St. Clair River (1968 and 1977) and the western basin of Lake Erie (1967 and 1979). Results are also presented from a 1983 study of Lake St. Clair. These studies indicate a general improvement in the macrozoobenthos of the area, exhibited by a stronger representation of pollution sensitive organisms and an improved community structure. The studies demonstrate both the sensitivity of these large rivers and lakes and their recuperative capabilities following pollution abatement measures. Despite the documented improvements, large areas of impairment still exist, particularly in the St. Clair and Detroit rivers.  相似文献   

11.
St. Clair and Detroit rivers, which are connecting channels between Lake Huron and Lake Erie in the Great Lakes basin, form part of the boundary between the state of Michigan and the province of Ontario. In 13 reaches, this flow divides locally around islands and dikes to form 31 branches. This study develops a set of simple linear regression equations for computing expected flow proportions in branches, generally as a function of the total flow within the reach. The equations are based on 533 acoustic Doppler current profiler measurements of flow obtained between 1996 and 2000. Root-mean-square errors of these regressions range from 0.00323 to 0.0895. In seven upstream reaches where flow is known because of flow specifications at the boundaries of the waterway and continuity constraints, the uncertainties of the flow proportions can be used to directly infer the uncertainties of the corresponding flows. In six downstream reaches, the uncertainties of flows are determined by both the uncertainties of the flow proportions and the uncertainties of the total flow in the reach. For these reaches, Monte Carlo simulations quantify the ratios of total uncertainty to flow proportion uncertainty, which range from 1.0026 to 13.984. To facilitate routine calculation, polynomial regression equations are developed to approximate these ratios as a function of flow. Results provide a mechanism for computing the magnitudes and uncertainties of steady-state flows within selected branches of the connecting channels by specifying inflows at the headwaters of St. Clair River, seven intervening tributaries, and Lake St. Clair.  相似文献   

12.
A Great Lakes hydrologic response model was used to study the temporal effects of St. Clair River dredging on Lakes St. Clair and Erie water levels and connecting channel flows. The dredging has had a significant effect on Great Lakes water levels since the mid-1980s. Uncompensated dredging permanently lowers the water levels of Lakes Michigan and Huron and causes a transitory rise in the water levels of Lakes St. Clair and Erie. Two hypothetical dredging projects, each equivalent to a 10 cm lowering of Lakes Michigan and Huron, were investigated. This lowering is approximately half the effect of the 7.6 and 8.2 meter dredging projects. In the first case the dredging was assumed to occur over a single year while in the second it was spread over a 2-year period. The dredging resulted in a maximum rise of 6 cm in the downstream levels of Lakes St. Clair and Erie. The corresponding increase in connecting channel flows was about 150 m3s?1. The effects were found to decrease over a 10-year period with a half-life of approximately 3 years. The maximum effects on Lake Erie lagged Lake St. Clair by about 1 year.  相似文献   

13.
Infrequent captures of invasive, non-native grass carp (Ctenopharyngodon idella) have occurred in Lake Erie over the last 30+ years, with recent evidence suggesting wild reproduction in the lake’s western basin (WB) is occurring. Information on grass carp movements in the Laurentian Great Lakes is lacking, but an improved understanding of large-scale movements and potential areas of aggregation will help inform control strategies and risk assessment if grass carp spread to other parts of Lake Erie and other Great Lakes. Twenty-three grass carp captured in Lake Erie’s WB were implanted with acoustic transmitters and released. Movements were monitored with acoustic receivers deployed throughout Lake Erie and elsewhere in the Great Lakes. Grass carp dispersed up to 236 km, with approximately 25% of fish dispersing greater than 100 km from their release location. Mean daily movements ranged from <0.01 to 2.49 km/day, with the highest daily averages occurring in the spring and summer. The Sandusky, Detroit, and Maumee Rivers, and Plum Creek were the most heavily used WB tributaries. Seventeen percent of grass carp moved into Lake Erie’s central or eastern basins, although all fish eventually returned to the WB. One fish emigrated from Lake Erie through the Huron-Erie Corridor and into Lake Huron. Based on our results, past assessments may have underestimated the potential for grass carp to spread in the Great Lakes. We recommend focusing grass carp control efforts on Sandusky River and Plum Creek given their high use by tagged fish, and secondarily on Maumee and Detroit Rivers.  相似文献   

14.
The connecting channels linking the Laurentian Great Lakes provide important migration routes, spawning grounds, and nursery habitat for fish, but their role as conduits between lakes for zooplankton is less understood. To address this knowledge gap in the St. Clair–Detroit River System (SCDRS), a comprehensive survey of crustacean zooplankton was performed in both riverine and lacustrine habitats from spring to fall 2014, providing the first system-wide assessment of zooplankton in the SCDRS. Zooplankton density and biomass were greatest in northern reaches of the system (southern Lake Huron and the St. Clair River) and decreased downstream towards Lake Erie. The composition of zooplankton also changed moving downstream, transitioning from a community dominated by calanoid copepods, to more cyclopoids and cladocerans in the Detroit River, and to cladocerans dominant in western Lake Erie. Coincidentally, species richness increased as sampling progressed downstream, and we estimated that our single-year sampling regime identified ~88% of potential taxa. Other species assemblages have responded positively to recent water quality and habitat restoration efforts in the SCDRS, and this survey of the zooplankton community provides benchmark information necessary to assess its response to continued recovery. In addition, information regarding the lower trophic levels of the system is integral to understanding recruitment of ecologically and economically valuable fish species targeted for recovery in the SCDRS.  相似文献   

15.
Lake Erie has undergone re-eutrophication beginning in the 1990s, even though total phosphorus (TP) loads to the lake continued to slowly decline. Using our 1982 and 2007–10 studies of the bioavailability of dissolved and particulate phosphorus export from major Ohio tributaries, together with our long-term TP and dissolved reactive phosphorus (DRP) loading data, we estimated long-term annual export of dissolved and particulate bioavailable phosphorus. DRP was found to adequately represent dissolved bioavailable export while 26–30% of the particulate phosphorus (PP) was extractable by 0.1 N NaOH, a frequently used indicator of PP bioavailability. During the period of re-eutrophication (1991–2012), DRP export from nonpoint sources in the Maumee and Sandusky rivers increased dramatically while NaOH-PP export had a slight decline for the Maumee and a small increase in the Sandusky. For the Cuyahoga River, both DRP and NaOH-PP increased, but these changes were small in relation to those of the Maumee and Sandusky. During this period, whole lake loading of both non-point and point sources of phosphorus declined. This study indicates that increased nonpoint loading of DRP is an important contributing factor to re-eutrophication. Although nonpoint control programs in the Maumee and Sandusky have been effective in reducing erosion and PP export, these programs have been accompanied by increased DRP export. Future target loads for Lake Erie should focus on reducing bioavailable phosphorus, especially DRP from nonpoint sources. Agricultural P load reduction programs should address both DRP and PP, and take into account the lower bioavailability of PP.  相似文献   

16.
An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms.  相似文献   

17.
Environmental occurrence of alkyllead compounds, both of molecular species, e.g., tetraalkyllead, and ionic species, e.g., dialkyllead and trialkyllead, is believed to be derived mainly from anthropogenic sources such as effluents of alkyllead production plants and from slow degradation of tetraalkyllead in the environment. The present study describes a survey for the occurrence of tetraalkyllead, trialkyllead, dialkyllead, and Pb(II) (R = Me, Et) in water, surface microlayer, fish, and sediments from 29 stations in the St. Clair and Detroit rivers, including the western basin of Lake Erie. Results indicated that triethyllead and diethlylead compounds have been found for the first time in fish and surface microlayer in St. Clair River near Corunna where a production plant is located. About 48% of the surface microlayer samples contained various alkyllead compounds whereas only one water sample taken from the St. Clair River was found to contain alkyllead. Alkyllead compounds were found in several species of fish caught in the St. Clair River, with northern pike containing the highest concentration of alkyllead (0.173 μg/g) followed by white sucker, carp, and walleye. The concentrations of alkyllead in some individual fish reached the p.p.m. level which is considered highly hazardous for consumption although health criteria for alkyllead are not yet available. The ratios of alkyllead to total lead ranged from 0% for yellow perch and brown trout to 56% for carp.  相似文献   

18.
Sediment samples from the Huron‐Erie Corridor (Great Lakes, North America) were collected to quantify the relative importance of natural and anthropogenic sources of contamination, and to study the spatial metal distribution patterns of metals as a function of the characteristics of the Corridor sediments. A stratified random sampling design was used to measure the spatial patterns of metal inputs, settling and sorting along the length of the Corridor. Factors regulating metal mobilization were assessed by determining metal affinities with the total organic fraction (TOM), the mineral fraction (represented as Al), and the granulometric characteristic (represented as <0.063 mm fraction). The study revealed that anthropogenic factors primarily regulated metal distributions and mobilization throughout the Huron‐Erie Corridor. In the St. Clair and Detroit Rivers, the spatial pattern of metal distributions strongly reflected local industrial sources. In the Walpole Delta and Lake St. Clair, however, inorganic (clays) and organic (TOM) particles dominated the contaminant distribution. Sediment contamination issues throughout the Huron‐Erie Corridor were dominated by mercury, released from sources along the St. Clair and Detroit Rivers. The mean enrichment factor EFAl for mercury in these sediments has reached 68.3. Other metal pollutants were confined to the sediments in the lower depositional reach of the Corridor.  相似文献   

19.
Concentrations of the major and trace metals varied considerably in the western basin of Lake Erie, ranging from 0.9 to 25.3?mg/g for aluminum, from 2.9 to 36.5?mg/g for iron, from 6.4 to 74.8?mg/g for calcium, from 1.2 to 13.5?μg/g for cobalt, from 2.8 to 61.6?μg/g for copper, from 2.7 to 83.0?μg/g for lead, from 0.1 to 2.9?μg/g for cadmium, and from 7.1 to 127.3?μg/g for strontium. Distinct patterns of sediment metal variability allowed the identification of two major fluvial sources and some active in-lake biogeochemical processes. The inputs of Sr were largely from the Maumee River, the inputs of Cu, Pb, Cd, and Co were dominated by the Detroit River, and the inputs of Fe and Al were roughly evenly from the two rivers. The removal of Sr and Ca from the water column was mainly through coprecipitation with calcite. In contrast, the transfer of Cu, Pb, Cd, and Co was largely attributed to the removal of fine sediment particles from the Detroit River mouth and adjacent nearshore areas and the deposition of the metals scavenged by settling organic materials in the basin's central deeper areas. The mobility of the trace metals was different during the in-lake mass transfer, with Co being the most mobile and Cd being the least mobile. Furthermore, the trace metal mobility differences have decreased significantly during the past half-century due to a substantial increase in organic matter from eutrophication in the basin.  相似文献   

20.
Road salt (NaCl, halite) use in areas with substantial snowfall has increased dramatically since the mid-20th century. However, few studies on chloride loading to the Laurentian Great Lakes or Ohio rivers have been conducted. To that end, we analyzed long-term (1972–2019) chloride data across 10 watersheds obtained as part of the Heidelberg Tributary Loading Program (HTLP) for the Lake Erie, Ohio River, and Grand Lake St. Marys watersheds and found that the Cuyahoga River, which has the greatest percent urban land use, had the highest watershed yield and mean concentrations of chloride for any of the HTLP rivers. Further, we apportioned the data seasonally to determine if river chloride levels were greater during seasons of road salt application (Winter) and snowmelt (Spring). Seasonally, winter levels of chloride exceeded the USEPA chronic water quality criteria concentration of 230 mg/L in more than half of the years of the 21st century, compared to only 1 year exceeding this value in the late 20th century. Further, road salt application is increasing with time in the Cuyahoga, Maumee, and Sandusky River watersheds. This increase is significantly and positively related to winter, spring, and fall mean chloride concentrations in the Cuyahoga River and winter mean chloride concentrations in the Maumee River. Finally, chloride-to-sulfate mass ratios (CSMR) for the Cuyahoga River almost always exceeded the 0.5 value that promotes corrosivity of metal pipes and are increasing with time. Ways to minimize the use of or even replace road salt as a deicer are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号