首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The economics of renewable energy are the largest barrier to renewable penetration. Nevertheless, the strong desire to reduce environmental emissions is considered a great support for renewable energy sources. In this paper, a full analysis for the cost of the kWh of electricity generated from different systems actually used in Egypt is presented. Also renewable energy systems are proposed and their costs are analyzed. The analysis considers the external cost of emissions from different generating systems. A proposed large scale PV plant of 3.3 MW, and a wind farm 11.25 MW grid connected at different sites are investigated. A life cycle cost analysis for each system was performed using the present value criterion. The comparison results showed that wind energy generation has the lowest cost, followed by a combined cycle–natural gas fired system. A photovoltaic system still uses comparatively expensive technology for electricity generation; even when external costs are considered the capital cost of photovoltaic needs to be reduced by about 60% in order to be economically competitive.  相似文献   

2.
Nowadays renewable sources are being used as clean sources to generate electricity and to reduce the dependency on fossil fuels. The uses of renewable sources are being increased in electricity generation and contributed to reduce the greenhouse gas emission. The function of any electrical power system is to connect everyone sufficiently, clean electric power anywhere and anytime of the country. This can be achieved through a modern power system by integrating electrical energy from clean renewable sources into the nation's electric grid to enhance reliability, efficiency and security of the power system. The paper on the status of review the driving force of the generation of renewable energy and proposing electrical energy generation from renewable sources to be ensured at least 20% of total energy of Australia. This paper has been studied the existing electricity generation capacity of Australia from renewable and non-renewable sources. Optimal electricity generation from renewable sources has been examined. The environmental impact of electricity generation from renewable sources has been considered. Under this paper the yearly average wind data of past 20 years and above for some meteorological stations of Australia have been used. The prospective electricity generation from wind turbines and solar photovoltaic panels has been proposed in the paper that will increase electrical energy of the power grid of Australia. It was estimated the capital cost of prospective electricity generation farms from wind and solar PV sources.  相似文献   

3.
This paper presents the ability of the existing Chinese energy system to integrate wind power and explores how the Chinese energy system needs to prepare itself in order to integrate more fluctuating renewable energy in the future. With this purpose in mind, a model of the Chinese energy system has been constructed by using EnergyPLAN based on the year 2007, which has then been used for investigating three issues. Firstly, the accuracy of the model itself has been examined and then the maximum feasible wind power penetration in the existing energy system has been identified. Finally, barriers have been discussed and suggestions proposed for the Chinese energy system to integrate large-scale renewable energy in the future. It is concluded that the model constructed by the use of EnergyPLAN can accurately simulate the Chinese energy system. Based on current regulations to secure grid stability, the maximum feasible wind power penetration in the existing Chinese energy system is approximately 26% from both technical and economic points of view. A fuel efficiency decrease occurred when increasing wind power penetration in the system, due to its rigid power supply structure and the task of securing grid stability, was left primarily to large coal-fired power plants. There are at least three possible solutions for the Chinese energy system to integrate large-scale fluctuating renewable energy in the long term: Redesigning the regulations to secure grid stability by means of diversifying the participants, such as including hydropower and CHP plants; integrating large-scale heat pumps combined with heat storage devices to satisfy district heat demands and developing electric vehicles to promote off peak electricity utilisation.  相似文献   

4.
To achieve a national energy access target of 90% urban and 51% rural by 2035, combat climate change, and diversify the energy sector in the country, the Zambian government is planning to integrate other renewable energy resources (RESs) such as wind, solar, biomass, and geothermal into the existing hydro generation–based power system. However, to achieve such targets, it is essential for the government to identify suitable combination of the RESs (electricity generation fuel mix) that can provide the greatest sustainability benefit to the country. In this paper, a multicriteria decision-making framework based on analytic hierarchy process and system dynamics techniques is proposed to evaluate and identify the best electricity generation fuel mix for Zambia. The renewable energy generation technologies considered include wind, solar photovoltaic, biomass, and hydropower. The criteria used are categorized as technical, economic, environmental, social, and political. The proposed approach was applied to rank the electricity generation fuel mix based on nine sustainability aspects: land use, CO2 emissions, job creation, policy promotion affordability, subsidy cost, air pollution reduction, RES electricity production, RES cumulative capacity, and RES initial capital cost. The results indicate that based on availability of RESs and sustainability aspects, in overall, the best future electricity generation mix option for Zambia is scenario with higher hydropower (40%) penetration, wind (30%), solar (20%), and lower biomass (10%) penetration in the overall electricity generation fuel mix, which is mainly due to environmental issues and availability of primary energy resources. The results further indicate that solar ranks first in most of the scenarios even after the penetration weights of RES are adjusted in the sensitivity analysis. The wind was ranked second in most of the scenarios followed by hydropower and last was biomass. These developed electricity generation fuel mix pathways would enable the country meeting the future electricity generation needs target at minimized environmental and social impacts by 2035. Therefore, this study is essential to assist in policy and decision making including planning at strategic level for sustainable energy diversification.  相似文献   

5.
6.
The provision of electricity is a key component in the development of a country’s health care facilities. This study was performed to estimate the cost of powering a rural primary health centre, in India with a decentralised renewable energy system. The costs were also compared between a decentralised renewable energy system and providing electricity from a grid source. The critical or break-even distance that makes electricity from a decentralised renewable energy system cost effective over that from a grid source was determined. The decentralised renewable energy system considered was a hydrogen-based fuel cell for the generation of electricity with hydrogen extracted from biogas obtained from biomass. The software program HOMER was used for the simulation analysis. The cost of a decentralised renewable energy system was found to be between seven times and less than half that of conventional energy, and the break-even distance was between 43.8 km to a negative distance for varying ranges of input component costs. The results of this study indicated that the use of a decentralised renewable energy system to power a rural primary health centre is both feasible and cost effective, and may even be cheaper than using electricity from a grid source.  相似文献   

7.
This paper presents a project undertaken in Mexico to electrify the remote village of San Antonio Agua Bendita (SAAB) using a custom designed hybrid power system. The hybrid power system will provide grid quality electricity to this community which would otherwise not have been electrified via traditional distribution lines. The hybrid power system was designed to electrify the entire community, incorporate multiple sources of renewable power with on-demand power, operate autonomously, and be cost effective in dollars per watt of electricity generated over the system's usable life. A major factor in the success of this project is the use of renewable energy for economic development and community partnership. Many rural electrification projects have provided power for domestic use but few have successfully provided power to improve the economic condition of the people served by the system. The SAAB hybrid avoids this pitfall by providing 120 VAC power at 60 Hz to anticipated industrial loads in the village, as well as providing grid quality power for domestic use. The system consists of the following modules: a controller, battery storage, a PV array, two 1O kW wind turbines, a diesel generator, a micro-hydro generater, power output control  相似文献   

8.
Demand response is considered to be a realistic and comparatively inexpensive solution aimed at increasing the penetration of renewable generations into the bulk electricity systems. The work in this paper highlights the demand response in conjunction with the optimal capacity of installed wind energy resources allocation. Authors proposed a total annual system cost model to minimize the cost of allocating wind power generating assets. This model contains capacity expansion, production, uncertainty, wind variability, emissions, and elasticity in demand to find out cost per hour to deliver electricity. A large‐scale electric grid (25 GW) is used to apply this model. Authors discovered that demand response based on interhourly system is not as much helpful as demand response grounded on intrahourly system. According to results, 32% wind generation share will provide the least cost. It is also worth noting that optimal amount of wind generation is much sensitive to installation cost as well as carbon tax.  相似文献   

9.
罗承先 《中外能源》2012,17(5):32-39
近年来可再生能源发电发展迅速,其中风力发电表现尤为突出.在一些风电先行国家的推动下,风电机组大型化取得长足进展,单机容量从亚兆瓦级迅速提升到兆瓦级,研制中的10MW级风电机组即将问世.机组的大型化提高了风电的经济性和竞争力.风机设备利用率将由目前的25%左右提高至2015年的28%,同时投资成本将大幅下降,按照GWEC的高增长方案预测,投资成本将由2009年的1350欧元/kW降至2030年的1093欧元/kW.鉴于风力发电的间歇性和随机性,蓄电技术成为大量引入可再生能源的有效手段,美欧日等都投入专项经费支持蓄电技术的研究开发.IEA最近在报告中指出,与热电联产组合的方式可大幅扩大可再生能源的利用,其重点在于热供应.智能电网将成为解决风电大规模接入和输送问题的根本途径,它将使电力系统整体利用效率大大提高,有利于抑制发电厂的化石燃料消费.我国在智能电网方面已取得了一定成果,但仍面临许多问题.各国政府的可再生能源电力收购政策促进了风电产业的发展,其中德国的风电收购政策值得我国借鉴.  相似文献   

10.
The effective rural electrification method varies with economic status and geographical location, and the benefits of decentralized generation differ for each energy system depending on its characteristics. This paper evaluates the most effective generation strategies with rural electrification in an optimized power system of Papua New Guinea (PNG) using a linear programming model. The energy system model developed for the study includes decentralized generation, centralized generation, and grid systems of electricity and gas with consideration for the current energy system and infrastructure. Two methods of rural electrification, decentralized generation and grid extension, are compared with and without the Clean Development Mechanism (CDM). The results of simulations show that extending the power grid that allows economical generation such as coal-fired power and hydropower to supply rural electricity is a more cost effective way for rural electrification. Although grid extension is more capital intensive than decentralized generation, the former reduces the total system cost through reduction of the fossil fuel use. Extending the power grid is also effective at attracting CDM investments, since it makes the power system flexible and provides opportunities to advance low emitting energy such as hydropower.  相似文献   

11.
J.K. Kaldellis  D. Zafirakis 《Energy》2007,32(12):2295-2305
The high wind and solar potential along with the extremely high electricity production cost met in the majority of Greek Aegean islands comprising autonomous electrical networks, imply the urgency for new renewable energy sources (RES) investments. To by-pass the electrical grid stability constraints arising from an extensive RES utilization, the adaptation of an appropriate energy storage system (ESS) is essential. In the present analysis, the cost effect of introducing selected storage technologies in a large variety of autonomous electrical grids so as to ensure higher levels of RES penetration, in particular wind and solar, is examined in detail. A systematic parametrical analysis concerning the effect of the ESSs’ main parameters on the economic behavior of the entire installation is also included. According to the results obtained, a properly sized RES-based electricity generation station in collaboration with the appropriate energy storage equipment is a promising solution for the energy demand problems of numerous autonomous electrical networks existing worldwide, at the same time suggesting a clean energy generation alternative and contributing to the diminution of the important environmental problems resulting from the operation of thermal power stations.  相似文献   

12.
This paper investigates the integration of renewable electricity into the UK system in 2020. The purpose is to find the optimal wind generation that can be integrated based on total cost of supply. Using EnergyPLAN model and the Department of Energy and Climate Change (DECC) energy projections as inputs, this paper simulates the total cost of electricity supply with various levels of wind generation considering two systems: a reference and an alternative system. The results show that 80 TWh of wind electricity is most preferable in both systems, saving up to 0.9% of total cost when compared to a conventional system without wind electricity production. The alternative system, with decentralized generation and active demand management, brings relatively more cost saving, and higher wind utilisation, compared to the reference case. The sensitivity analysis with alternative fuel and capital costs again confirms the superiority of the alternative over the reference system.  相似文献   

13.
Increasing global energy demand and the continued reliance on non-renewable energy sources, especially in developing countries, will cause continued increases in greenhouse gas emissions unless alternative electricity generation methods are employed. Although renewable energy sources can provide a clean way to produce electricity, the intermittent nature of many existing renewable energy sources, such as energy from the wind or sun, can cause instability in the energy balance. Energy storage systems such as power-to-gas may provide a clean and efficient way to store the overproduced electricity. In this work, a power-to-gas energy storage system coupled with a chemical looping combustion combined-cycle power generation system is proposed to provide base and intermediate load power from the unused electricity from the grid. Enhanced process integration was employed to achieve optimal heat and exergy recovery. The simulation results using ASPEN Plus V8.8 suggest that electric power generation with an overall energy efficiency of 56% can be achieved by using a methane chemical looping combustion power generation process with additional hydrogen produced from a solid oxide electrolysis cell. The proposed system was also evaluated to further improve the system's total energy efficiency by changing the key operating parameters.  相似文献   

14.
From the perspective of global warming mitigation and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all-electric apartment houses or residence such as DC smart houses are increasing. However, due to the fluctuating power from renewable energy sources and loads, supply-demand balancing of power system becomes problematic. Smart grid is a solution to this problem. This paper presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuation. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuation, it is possible to reduce the electric power consumption and the cost of electricity. This system consists of photovoltaic generator, heat pump, battery, solar collector, and load. To verify the effectiveness of the proposed system, results are used in simulation presented.  相似文献   

15.
The industrial sector is one of the major energy consumers that contribute to global climate change. Demand response programs and on‐site renewable energy provide great opportunities for the industrial sector to both go green and lower production costs. In this paper, a 2‐stage stochastic flow shop scheduling problem is proposed to minimize the total electricity purchase cost. The energy demand of the designed manufacturing system is met by on‐site renewables, energy storage, as well as the supply from the power grid. The volatile price, such as day‐ahead and real‐time pricing, applies to the portion supplied by the power grid. The first stage of the formulated model determines optimal job schedules and minimizes day‐ahead purchase commitment cost that considers forecasted renewable generation. The volatility of the real‐time electricity price and the variability of renewable generation are considered in the second stage of the model to compensate for errors of the forecasted renewable supply; the model will also minimize the total cost of real‐time electricity supplied by the real‐time pricing market and maximize the total profit of renewable fed into the grid. Case study results show that cost savings because of on‐site renewables are significant. Seasonal cost saving differences are also observed. The cost saving in summer is higher than that in winter with solar and wind supply in the system. Although the battery system also contributes to the cost saving, its effect is not as significant as the renewables.  相似文献   

16.
As the share of distributed renewable power generation increases, high electricity prices and low feed-in tariff rates encourage the generation of electricity for personal use. In the building sector, this has led to growing interest in energy self-sufficient buildings that feature battery and hydrogen storage capacities. In this study, we compare potential technology pathways for residential energy storage in terms of their economic performance by means of a temporal optimization model of the fully self-sufficient energy system of a single-family building, taking into account its residential occupancy patterns and thermal equipment. We show for the first time how heat integration with reversible solid oxide cells (rSOCs) and liquid organic hydrogen carriers (LOHCs) in high-efficiency, single-family buildings could, by 2030, enable the self-sufficient supply of electricity and heat at a yearly premium of 52% against electricity supplied by the grid. Compared to lithium-ion battery systems, the total annualized cost of a self-sufficient energy supply can be reduced by 80% through the thermal integration of LOHC reactors and rSOC systems.  相似文献   

17.
An economic prediction model of hydrogen production from renewable energy complemented with off-peak electricity is developed, and the cost of carbon emission for the off-peak electricity from grid is also considered. The variation of hydrogen cost with the utilization hours of off-peak electricity and the allowable range of off-peak electricity utilization hours under different carbon prices and grid average emission factors are investigated. The results show that it is influenced by the multiplication product of the carbon price and the average carbon emission factor of the grid electricity. The use of off-peak electricity reduces the cost of hydrogen when the multiplication product is less than a critical value, while it causes an increase in the cost of hydrogen when larger than the critical value. Off-peak electricity utilization hours are also constrained by the emission intensity requirement of low-carbon or clean hydrogen. In addition, a generalized multivariate coupled analysis method is developed by investigating single variable sensitivities and decision needs at different stages of the project. The results show that the key coupling variables in the site selection stage are hydrogen price, renewable energy utilization hours and integrated tariff, which is determined by both renewable energy and off-peak grid electricity. In the scheme design stage the key coupling variables are electrolysis energy consumption and unit installed cost. When project parameters are determined along with site specific hydrogen price and renewable energy tariffs, further scheme optimization can be undertaken.  相似文献   

18.
Recently, renewable energy sources such as wind power and photovoltaic (PV) are receiving a wide acceptance because they are inexhaustible and nonpolluting. Renewable energy sources are intermittent ones because of climate changes in wind speed and solar irradiance. Due to the continuous demand growth and the necessity for efficient and reliable electricity supply, there is a real need to increase the penetration of gas technologies in power grids. The Canadian government and stakeholders are looking for ways to increase the reliability and sustainability of power grid, and gas-power technologies may provide a solution. This paper explores the integration of gas and renewable generation technologies to provide a qualified, reliable, and environmentally friendly power system while satisfying regional electricity demands and reducing generation cost. Scenarios are evaluated using four key performance indicators (KPIs), economic, power quality, reliability, and environmental friendliness. Various scenarios outcomes are compared based on the defined performance indices. The proposed scenario analysis tool has three components, the geographic information system (GIS) for recording transmission and distribution lines and generation sites, the energy semantic network (ESN) knowledgebase to store information, and an algorithm created in Matlab/Simulink for evaluating scenarios. To interact with the scenario analysis tool, a graphical user interface (GUI) is used where users can define the desired geographic area, desired generation percentage via gas technology, and system parameters. To evaluate the effectiveness of the proposed method, the regional zone of the province of Ontario and Toronto are used as case studies.  相似文献   

19.
Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all-inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage. The system is modelled in the energy systems analyses model energyPRO with a view to investigating how the different storages marginally affect the amount of wind power that may be integrated applying the different storage options and the associated economic costs. Results show the largest system impact but also most costly potential are in the form of electricity storages.  相似文献   

20.
微能源网以能源的梯级利用为原则,可实现风、光等多种新能源的高比例消纳,满足区域内电、热、冷等多种能源需求。微能源网中存在新能源出力与冷、热、电负荷的多重不确定性。为增强系统规划结果的鲁棒性,常采用不确定集表述新能源出力与多种用能需求的不确定性,实现针对微能源网的鲁棒规划设计,往往使系统规划结果过于保守,降低系统经济性。为克服以上问题,规避实际运行中不可能发生的场景,降低系统规划结果的保守性,文章提出一种考虑时间相关性的微能源网鲁棒规划模型。该模型在计及多重源荷不确定性的基础上,进一步考虑新能源出力与冷、热、电负荷的时间相关性。通过算例对传统不确定集与所提出的改进不确定集进行对比分析,验证了所提模型及方法的优越性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号