首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Drying Technology》2013,31(4):779-794
Abstract

A fluidized bed dryer (FBD) and a combined microwave/fluidized bed dryer (CMFD) are used to dry the fresh ripe peppercorns. The average moisture content vs. elapsed drying time, and drying rate vs. average moisture content are experimentally investigated. It is found that the microwave field from the CMFD can increase the potential of the conventional fluidized bed drying. The drying rates of both dryers are dependent on the inlet air temperature and velocity. For the CMFD, the effects of the air velocity on the drying rate are found to be opposite to our previous results tested with white pepper seeds i.e., the drying rates of the fresh ripe peppercorns decreased with increasing air velocity. By using a CMFD, the drying time required to reach the desired moisture content can be reduced to 80–90% of the drying time required for a FBD at the same drying air temperature and velocity. The color of the product dried by a CMFD is also attractive: it becomes flaming yellow, instead of black as obtained from a FBD. The physical structure of the peppercorn, before and after the drying process is also investigated by a metallurgical macroscope and an image analyzer. Different from drying by a FBD, the external form and matter of the white pepper seed are still maintained, even after passing through the drying process.  相似文献   

2.
Abstract

The drying rates curves in terms of moisture content versus elapsed drying time for white pepper seeds were obtained experimentally using a fluidized bed and a combined microwave/fluidized bed. The combined microwave/fluidized bed employs a microwave field to assist convective drying. For both procedures, the drying rates were found to be dependent on the inlet air temperature and velocity. Significantly improved drying rates were achieved utilized a combined microwave/fluidized bed drying compared with a conventional fluidized bed.  相似文献   

3.
Corn, rice, and wheat seeds with an initial moisture content (IMC) of 20–25% wb were dried to moisture content below 18% wb at 40–80°C in a fluidized bed dryer (FBD) and spouted bed dryer (SBD) and the seeds with IMC 18% wb were dried to below 14% wb at air temperatures 18–30°C and relative humidity 60–70% by an in-store dryer (ISD). As a result, it appears that a two-stage drying concept is feasible in drying high-moisture-content seeds due to the high germination rate of dried seeds. Nonetheless, the drying temperature must be carefully selected. A drying temperature of 40°C was clearly safe for all samples, whereas more than 90% of wheat seeds still germinated after drying at 60°C in FBD. Furthermore, drying seeds with IMC 18% wb by ISD was safe under specified drying conditions.  相似文献   

4.
袁璐韫  郑燕萍  杨阿三  孙勤  程榕 《化学工程》2011,39(10):39-42,46
循环流化床(CFB)作为一种新兴反应器,其结构简单、气固接触效率高、处理量大,成为气固二相干燥应用研究的新方向.文中在自建的循环流化床(内径0.104 m×高2.35 m)内,以玉米淀粉(dp=8 μm,ρp=800 kg/m3)为C类颗粒,进行了连续干燥.实验初步研究了进料速率、进风温度及气速等操作参数对淀粉平均停留...  相似文献   

5.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

6.
In this study, a hybrid dyer, combining heat pump drying (HPD) with fluidized bed drying (FBD) concepts were designed and fabricated. The pregerminated rough rice (pre-GRR) was dried in multistage using this hybrid dryer to compare with the single-stage drying by hot air dryer. The objectives were to test the application of this hybrid dryer and determine the suitable drying condition for pre-GRR. The result indicated that the punched plate distributor was the most suitable distributor. The pre-GRR should be dried by the three-stage drying method using either FBD or HPD at 45°C in the last stage to obtain higher head rice yield, lower fissure grain, and better color values than their counterparts. The scanning electron micrographs proved that starch gelatinization occurred when applying FBD at temperatures between 100 and 140°C causing the adhesive connections inside the kernels and subsequent decrease in fissures.  相似文献   

7.
The effect of water blanching treatment and the inlet air temperature on drying kinetics as well as the quality attributes of carrot cubes dried in a spout–fluidized bed dryer at 60, 70, 80, and 90°C were analyzed. The material shrinkage and the rehydration potential were calculated to assess the changes in quality of dried carrots. It was found that the value of the air velocity during the drying of carrot cubes in a spout–fluidized bed dryer should be related to the moisture content of the carrot particles. A high value of air velocity at the beginning of the drying cycle and a lower value for the later stages were also required. The linear equation was correlated to the data of shrinkage of raw and blanched carrots. Blanching significantly influenced the coefficients in the shrinkage model derived for drying of carrot cubes in a spout–fluidized bed dryer, while drying temperature did not influence the shrinkage of carrot particles. The intensity of heat and mass transfer during spout–fluidized drying of carrot cubes was dependent on the drying temperature. A correlation was developed to calculate the values of effective moisture diffusivity of dried carrot cubes as a function of the moisture content and temperature of the material. It was observed that for any given time of rehydration, both the moisture content and the rehydration ratio calculated for samples dried at 60°C were higher than for samples dried at temperatures of 60, 70, 80, and 90°C.  相似文献   

8.
The mixing and drying behavior in a continuous fluidized bed dryer were investigated experimentally by characterizing the residence time distribution (RTD) and incorporating a micromixing model together with the drying kinetics obtained from batch drying. The RTD of the dryer was modeled using a tank-in-series model. It was found that a high initial material loading and a low material flow rate resulted in a reduced peak height and broaded peak width of the RTD curve. To predict the continuous dryer effluent moisture content, we combined: (a) the drying kinetics as determined in a batch fluidized bed dryer, (b) the RTD model, and (c) micromixing models—segregation and maximum mixedness models. It was found that the segregation model overpredicted the effluent moisture content by up to 5% for the cases we have studied while the maximum mixedness model gave a good prediction of the effluent moisture content.  相似文献   

9.
The drying behavior of moist spherical particles in a microwave-assisted fluidized bed dryer was simulated. The two-fluid Eulerian model incorporating the kinetic theory of granular flow was applied to simulate the gas–solid flow. The simulations were carried out using the commercial computational fluid dynamics (CFD) package Fluent 6.3.26. The effects of different levels of microwave power densities as well as initial gas temperature on the prediction of solids moisture content, gas temperature, and gas absolute humidity were investigated. The effect of microwaves was incorporated into calculations using a concatenated user-defined function (UDF). The simulation results were compared with experimental data obtained from drying of soybeans in a pilot-scale microwave-assisted fluidized bed dryer and reasonable agreement was found. The mean relative deviation for prediction of solids moisture content, gas temperature, and gas absolute humidity were less than 3, 10, and 5%, respectively. Further work is needed to validate the proposed model for large-scale plants.  相似文献   

10.
A general mathematical model of heat and mass transfer was developed to simulate the microwave-assisted fluidized bed drying of bulk grain. The model was solved using the well-known Runge-Kutta-Gill method. The model is capable of predicting the moisture content of soybean as well as the drying air parameters (i.e., drying air temperature and moisture content) during drying. The values of mean relative deviation (MRD) were less than 8 and 10% for prediction of grain moisture content and outlet air parameters, respectively, which reflects an acceptable accuracy. In comparison with conventional fluidized bed drying of soybean, microwave-assisted fluidized bed drying led to 83.39–98.07% savings in drying time and 82.07–95.22% savings in specific energy consumption when reducing soybean moisture content from 18.32 to 12% (db).  相似文献   

11.
Intermittent drying of materials is an alternative operation that aims at reducing energy consumption, improve the preservation of dried products or decrease effective drying time. Intermittent drying supplies the system with time-varying input air properties that are opposite to traditional operations, where air properties are constant at the dryer inlet. The major objective of this study is to establish the most satisfactory patterns of air temperature and velocity modulation at the dryer entrance to reduce energy consumption. This optimization study was based on a heterogeneous model for the drying of grains in fixed bed validated with experimental data. Intermittent and conventional operation experiments were conducted using equal energy consumption, and the influence of air temperature and velocity modulation on the drying rates related to the percentage of evaporated water were assessed. Results indicated that higher drying rates can be achieved under intermittent operation, and the validated model based on these results could reasonably predict temperature and moisture content profiles. Simulations pointed out that the best modulation patterns of air properties is a function of a variety of system conditions such as initial temperature and moisture content of both soybean and drying air. However, a tendency to reduce energy consumption was observed when the system operation is initially at high temperature and constantly at low velocity.  相似文献   

12.
Drying characteristics of shelled corn (Zea mays L) with an initial moisture content of 26% dry basis (db) was studied in a fluidized bed dryer assisted by microwave heating. Four air temperatures (30, 40, 50 and 60 °C) and five microwave powers (180, 360, 540, 720 and 900 W) were studied. Several experiments were conducted to obtain data for sample moisture content versus drying time. The results showed that increasing the drying air temperature resulted in up to 5% decrease in drying time while in the microwave-assisted fluidized bed system, the drying time decreased dramatically up to 50% at a given and corresponding drying air temperature at each microwave energy level. As a result, addition of microwave energy to the fluidized bed drying is recommended to enhance the drying rate of shelled corn. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the drying time (output parameter for ANN modeling) was investigated. Microwave power, drying air temperature and grain moisture content were considered as input parameters for the model. An ANN model with 170 neurons was selected for studying the influence of transfer functions and training algorithms. The results revealed that a network with the Tansig (hyperbolic tangent sigmoid) transfer function and trainrp (Resilient back propagation) back propagation algorithm made the most accurate predictions for the shelled corn drying system. The effects of uncertainties in output experimental data and ANN prediction values on root mean square error (RMSE) were studied by introducing small random errors within a range of ±5%.  相似文献   

13.
Energy consumption and rice quality are the main concerns of millers and must be assessed to ascertain suitable industrial drying strategy. In this article, industrial paddy drying methods as usually practiced in the BERNAS paddy drying complexes of Malaysia have been evaluated. The analysis showed that the specific electrical and thermal energy consumption varied between 16.19 kWh to 22.07 kWh and 787.22 MJ to 1015.32 MJ, respectively, in single-stage paddy drying (SSPD) using an inclined bed dryer (IBD) to dry each tonne of freshly harvested paddy with average moisture content of 23.35 ± 0.86% wb. On the other hand, the energy consumptions for two-stage paddy drying (TSPD) with a fluidized bed dryer (FBD) followed by IBD were 21.37 kWh/t to 30.69 kWh/t and 666.81 MJ/t to 1083.42 MJ/t, respectively. SSPD at 35–39°C and TSPD using FBD at 120°C as the first stage, followed by IBD as the second stage at lower temperature of 35–39°C yielded 2–3.6% higher head rice yield than paddy-dried by a single stage with IBD using comparatively higher temperature of 40–44°C. Therefore, IBD is recommended to be operated using a temperature of 35–39°C both in single-stage drying and second-stage drying of paddy after fluidized bed drying to obtain quality rice.  相似文献   

14.
循环流化床中C类颗粒的干燥   总被引:1,自引:1,他引:0  
为将循环流化床(CFB)技术应用于C类颗粒(<30μm)的干燥,在自建的循环流化床(内径0.104 m×高2.35 m)内,以玉米淀粉(dp=8 μm,ρp=800 kg/m3)为研究对象,考察了不同操作参数对其干燥特性及干湿分离情况的影响.结果表明:循环流化床适用于C类颗粒的干燥;干燥速率随气速及进风温度的增大而增大...  相似文献   

15.
A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 -0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.  相似文献   

16.
Brown coal drying based on self-heat recuperation (SHR) technology which recovers effectively both latent and sensible heat was developed to reduce energy consumption which is required during drying. A fluidized bed dryer (SHR–FBD) with heat exchanger immersed inside the bed was adopted as the evaporator. To evaluate the energy efficiency of the proposed SHR–FBD system, a comparison to the available mechanical vapor recompression (MVR) based drying system concerning the effect of the fluidization velocity and bed aspect ratio to the required energy input for brown coal drying was conducted. From the results, the proposed SHR–FBD system was found to be able to drastically reduce the drying energy consumption at all evaluated fluidization velocities and bed aspect ratios. Numerically, the proposed system reduced the energy consumption to about 15% and 75% of that required in hot air and MVR drying systems.  相似文献   

17.
This article studies the possibility of reducing the high initial moisture content of wet rough rice using a small-scale low-cost pneumatic conveying dryer as a first stage dryer. The parameters investigated are final moisture content, surface temperature of rough rice, head rice yield, drying rate, power consumption per unit mass of evaporated water, and physical characteristics of rice. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, initial moisture content from 22 to 26% (wet basis), and drying air temperature from 35 to 70°C. From the experimental results, it is found that this drying method can be used for fresh rough rice with an initial moisture content of over 24% (wet basis). The drying process is able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. The moisture content can be reduced to approximately 18% (wet basis) or about 5–6% of the initial moisture content within 3–4 s. The optimal drying air temperature is in the range of 50 to 60°C. A comparison of pneumatic conveying drying data obtained from the present study with fluidized bed drying data reported in the open literature is also discussed.  相似文献   

18.
This article studies the possibility of reducing the high initial moisture content of wet rough rice using a small-scale low-cost pneumatic conveying dryer as a first stage dryer. The parameters investigated are final moisture content, surface temperature of rough rice, head rice yield, drying rate, power consumption per unit mass of evaporated water, and physical characteristics of rice. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, initial moisture content from 22 to 26% (wet basis), and drying air temperature from 35 to 70°C. From the experimental results, it is found that this drying method can be used for fresh rough rice with an initial moisture content of over 24% (wet basis). The drying process is able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. The moisture content can be reduced to approximately 18% (wet basis) or about 5-6% of the initial moisture content within 3-4 s. The optimal drying air temperature is in the range of 50 to 60°C. A comparison of pneumatic conveying drying data obtained from the present study with fluidized bed drying data reported in the open literature is also discussed.  相似文献   

19.
The residence times of solids flowing through a fluidized bed dryer exhibit dispersion about the mean. In this paper, expressions for the probability density functions of solids moisture content in the various stages of a multi-stage dryer are derived. A simple recurrence relationship for the moments of the distribution is also presented. The analysis is applied to the drying of cereal grains, and it is shown that the degree of drying increases with the number of stages in the dryer. Probability density functions of the moisture content are presented.  相似文献   

20.
ABSTRACT

A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 -0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号