首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以乙烯基硅油为基础聚合物,含氢硅油为交联剂,乙烯基硅树脂和紫外线吸收剂为添加剂,铂配合物为催化剂,制得紫外线吸收高透明硅橡胶。讨论了硅树脂对硅橡胶硫化性能的影响,紫外线吸收剂对硅橡胶的透光率、紫外线吸收效果及耐老化性的影响。结果表明,以67份黏度约3 500 m Pa·s的乙烯基硅油、11份黏度约60 000 m Pa·s的乙烯基硅油为基础聚合物,硅氢含量为0.91 mol/100 g的含氢硅油6.5份与硅氢含量为0.19 mol/100 g的含氢硅油5.4份为交联剂,22份乙烯基含量约0.041mol/100g的乙烯基硅树脂为添加剂,采用TINUVIN 384-2为紫外线吸收剂的配方制得的硅橡胶可以实现较好的透光率及紫外线吸收效果,同时耐老化效果也较好。  相似文献   

2.
以乙烯基硅油、含氢硅油、气相白炭黑、增粘剂和铂金催化剂为原料制备了一款单组分加成型结构粘接胶,研究了不同乙烯基硅油的黏度、不同含氢量的含氢硅油和不同比表面积的气相白炭黑对硅橡胶性能的影响。结果表明:选用10Pa·s的乙烯基硅油、1.0%的含氢硅油和QS-30气相白炭黑能得到拉伸强度为4.8MPa,断裂伸长率为490%,剪切强度(Al-Al)为3.8MPa,室温贮存大于180d的单组分加成型结构粘接胶。  相似文献   

3.
以加成型液体硅橡胶为基胶,气相法白炭黑为补强剂,镍包石墨粉(Ni/C)为导电填料,制备了具有优异力学性能和导电性能的FIP加成型导电硅橡胶。考察了乙烯基硅油,交联剂,导电填料的用量、尺寸、形貌等对导电硅橡胶性能的影响。结果表明,将黏度5 Pa·s和50 Pa·s的端乙烯基硅油按质量比1∶1复配作为基础聚合物,复合型含氢硅油作为交联剂,片状Ni/C和粒状Ni/C复配作为导电填料时,制得的导电胶抗粉体沉降性能明显,综合性能优异,拉伸强度超过3 MPa,撕裂强度可达16.5 k N/m,常温电阻可低至0.3Ω。  相似文献   

4.
以乙烯基硅油、含氢硅油、导热填料、铂催化剂为原料,制成了空间级加成型双组分导热硅橡胶。研究了精制方法对乙烯基硅油真空质量损失率的影响以及填料种类、用量对硅橡胶性能的影响。结果表明,采用溶剂萃取法精制乙烯基硅油,可使乙烯基硅油的真空质量损失率降至0.47%,满足空间级材料的使用要求;硅橡胶的较佳配方是:黏度5 000 m Pa·s的乙烯基硅油100份,粒径5~8μm的碳化硅240份,交联剂5份;在此条件下制得的加成型双组分导热硅橡胶的热导率为1.26 W/m·K、接触热导率在15 000 W/m2·K以上、拉伸强度为1.68 MPa、真空质量损失率为0.27%、可凝挥发物质量分数为0.02%,  相似文献   

5.
以甲基硅油、α,-二羟基聚二甲基硅氧烷(107硅橡胶)、气相法二氧化硅、聚醚硅油、Span-Twen复配乳化剂为主要原料,制得乳液型有机硅消泡剂。研究了各组分对消泡剂性能的影响。结果表明,当黏度为50、350、1 000 m Pa·s的甲基硅油与黏度为20 000 m Pa·s的107硅橡胶混合质量比为1∶3∶2∶2,二氧化硅相对于硅膏的质量分数为6%,消泡剂中聚醚硅油相对于硅膏的质量分数为6%,Span-Tween复配乳化剂相对于硅膏的质量分数为4%时,制备的消泡剂具有良好的消泡性、抑泡性、离心稳定性及水分散性。  相似文献   

6.
正广州天赐高新材料股份有限公司的张利萍等人以黏度20 000 mPa·s的乙烯基硅油(乙烯基摩尔分数0.1%)、黏度60 000 mPa·s的乙烯基硅油(乙烯基摩尔分数0.06%)、黏度63 000 mPa·s的甲基乙烯基VMQ硅树脂(乙烯基摩尔分数1.46%、VMQ质量分数50%)、黏度30 mPa·s的含氢硅油(硅氢基质量分数0.4%)、比表面积300 m2/g的气相法白炭黑、铂催化剂及抑制剂为原料,制成不含三水氧化铝(ATH)的双组分加成型液体硅橡胶。研究了不  相似文献   

7.
研制了一种粘接不锈钢用、耐水煮,120℃、10 min完全固化的食品级加成型液体硅橡胶。制备了一种乙烯基环氧硅氧烷低聚物增粘剂,研究了增粘剂用量、气相二氧化硅、含氢硅油的活性氢含量,含氢硅油中的硅氢与乙烯基硅油中的乙烯基的物质的量比[n(SiH)/n(SiVi)]对加成型硅橡胶的粘接性等性能的影响。结果表明,选用10 000 m Pa·s乙烯基硅油,增粘剂用量1.5%,含氢硅油活性氢质量分数0.75%,n(SiH)/n(SiVi)=1.3时,制备的不锈钢粘接用加成型液体硅橡胶性能优异。  相似文献   

8.
以乙烯基硅油、乙烯基硅树脂、四甲基四乙烯基环四硅氧烷、含氢硅树脂等为原料制得高透明高硬度硅橡胶,探讨了四甲基四乙烯基环四硅氧烷用量、硅氢与乙烯基的量之比、乙烯基硅树脂和乙烯基硅油种类对硅橡胶性能的影响。结果表明:在本实验的制备和硫化条件下,随着四甲基四乙烯基环四硅氧烷用量的增加,硅橡胶的黏度从12 600 m Pa·s降至2 800 m Pa·s,透光率从91.1%降至74.6%,邵尔A硬度从69度升高至85度;随着硅氢与乙烯基的量之比的提高,硅橡胶的邵尔A硬度先从68度升高至84度,随后降至82度;随着黏度较低乙烯基硅油用量和乙烯基位于M单元上硅树脂用量的增加,硅橡胶的邵尔A硬度从70度升高至79度。  相似文献   

9.
以α,ω-乙烯基聚二甲基硅氧烷(端乙烯基硅油)为基础聚合物,含氢硅油为交联剂,气相法白炭黑和乙烯基硅树脂为补强填料,自制的硅烷低聚物为增粘剂,铂配合物为催化剂,炔醇为抑制剂,制备了具有快速硫化和粘接性能的加成型有机硅密封胶,并研究了各组分对密封胶性能的影响。结果表明,以黏度为5 000 m Pa·s和50 000 m Pa·s (质量比1∶1)的端乙烯基硅油复配物作基础聚合物,含氢硅油用量为nSi-H/nVi=3,自制硅烷低聚物与γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(质量比3∶1)作为增粘剂且总用量为3份,乙炔环己醇和甲基丁炔醇(质量比1∶1)作为抑制剂,制得的加成型有机硅密封胶可以在120℃×2 min内对聚对苯二甲酸丁二醇酯/玻璃实现快速硫化和粘接,扭矩达到3. 85 N·m,拉伸强度达5. 10MPa,剪切强度达2. 97 MPa,正硫化时间T90为76 s,操作时间为23 h。  相似文献   

10.
以1,6-己二醇二甲基丙烯酸酯(HDDMA)、四甲基四氢基环四硅氧烷(DH4)为原料,制得增粘剂;再配以端乙烯基硅油、硅微粉、含氢硅油,催化剂等制得导热灌封胶;通过调节含氢硅油和增粘剂的用量,制得具有良好自粘性的导热灌封胶。考察了含氢硅油及增粘剂的用量对灌封胶粘接性的影响。结果表明,当含氢硅油用量为18份、增粘剂用量为12份时,制得的灌封胶对铝(打磨)、PCB、PC的粘接强度分别达到1.88、1.45、1.72 MPa、自粘性较好,其热导率为0.6 W/m·K、黏度3 000~4 000 mPa·s、邵尔A硬度55度、拉伸强度2.68 MPa、撕裂强度2.33 k N/m。  相似文献   

11.
以乙烯基硅油为基础硅油,添加端侧基含氢硅油、甲基硅油、铂金催化剂、乙炔环己醇等原料,制得双组分加成型硅凝胶。研究了乙烯基硅油的黏度、端侧基含氢硅油中活性氢质量分数、体系中SiH与SiVi物质的量之比、甲基硅油的用量对双组分加成型硅凝胶性能的影响。结果表明:当乙烯基硅油黏度为1 000 mPa·s,端侧基含氢硅油活性氢质量分数为0.3%,体系中SiH与SiVi物质的量之比为1.4,甲基硅油质量分数为5%时,制得的硅凝胶性能较佳,易脱泡,硬度21度,拉断伸长率105%,黏度850 mPa·s。  相似文献   

12.
加成型室温硫化硅橡胶力学特性的影响规律   总被引:1,自引:1,他引:0  
以端乙烯基硅油为基础胶、低含氢硅油为交联剂、处理气相法白炭黑为填料、铂-二乙烯基四甲基二硅氧烷配合物为催化剂,制备了加成型室温硫化硅橡胶。考察了端乙烯基硅油黏度、处理气相法白炭黑用量、含氢硅油中的S—iH基与乙烯基硅油中的SiCH CH2基的量之比(简称A值)对硅橡胶力学特性的影响。结果表明,随着端乙烯基硅油黏度的增加,硅橡胶的拉伸强度、拉断伸长率和撕裂强度分别出现峰值;处理气相法白炭黑使硅橡胶的硬度先增后降;较佳工艺为:端乙烯基聚硅氧烷的黏度为5 P.as、处理气相法白炭黑用量为25份(按乙烯基硅油用量为100份计)、A值在1~3.6之间。按此条件制成的硅橡胶的邵尔A硬度为34度、拉伸强度4.78~5.09MPa、撕裂强度4.97 kN/m、拉断伸长率为107%。  相似文献   

13.
双组分加成型硅橡胶电子灌封料的制备   总被引:7,自引:0,他引:7  
以低黏度端乙烯基硅油为基胶、高纯石英粉为填料、含氢硅油为交联剂、铂配合物为催化剂,制得双组分加成型硅橡胶电子灌封料.研究了各种组分对加成型电子灌封料力学性能、电性能的影响.结果表明,优选配方为采用活性氢质量分数为0.3%的含氢硅油和乙烯基摩尔分数为0.8%的端乙烯基硅油为原料,含氢硅油中的活性氢与乙烯基硅油中的乙烯基的量之比为1.2,高纯石英粉用量为40份,铂配合物的质量分数为10×10-6;按此配方制成的硅橡胶灌封料硫化后的拉伸强度为2.44 Mpa、邵尔A硬度为47度、断裂伸长率为136%、撕裂强度为3.88 kN/m、体积电阻率为9.4×1014 Ω·cm、相对介电常数为3.1、损耗因数为0.0011、电气强度为21.5 MV/m、热导率为0.4 W/(m·K)、热膨胀系数为2.6×10-4 K-1、阻燃等级为94 V-0级,其力学性能、电性能、热性能及工艺性能接近国外同类产品.  相似文献   

14.
以端乙烯基硅油、含氢硅油为硅氢加成反应底物,(Me-Cp) Pt(Me)3为光催化剂,通过紫外光诱导(Me-Cp) Pt(Me)3催化硅氢加成反应制得硅橡胶,并对光催化剂(Me-Cp) Pt(Me)3的浓度、光固化反应条件、紫外光固化动力学以及端乙烯基硅油黏度对硅橡胶性能的影响进行了研究。结果表明,当(MeCp) Pt(Me)3的质量分数为400×10-6时,在5 min内反应转化率接近100%;高黏度的乙烯基硅油有利于反应最终转化率的提高;黏度为5 000 mm2/s的乙烯基硅油体系所制硅橡胶的力学性能较好,其拉伸强度为0. 528 MPa,拉断伸长率达789%(约为500 mm2/s和10 000 mm2/s体系的2~3倍);高黏度乙烯基硅油制得的硅橡胶表现出更好的热稳定性,硅橡胶热质量损失率10%时的温度从487℃提高至496℃,最终残余质量分数从60%提高至68%。该法能在短时间内制得硅橡胶制品,并可通过增加乙烯基硅油的黏度,有效提高硅橡胶制品的力学性能及热稳定性。  相似文献   

15.
研究绝缘导热加成型有机硅灌封胶的制备及性能。结果表明:当采用粘度为300和1 000 m Pa·s的端乙烯基硅油以质量比40∶60复配、选用活性氢质量分数为0.005 0的含氢硅油且硅氢基/硅乙烯基摩尔比为1.2时,有机硅灌封胶的物理性能较佳;当三氧化二铝用量为150份时,有机硅灌封胶具有良好的综合性能。  相似文献   

16.
考察了乙烯基硅油及含氢硅油对加成型液体乙烯基硅橡胶物理机械性能的影响。结果表明,在100份乙烯基硅橡胶中加入10份乙烯基质量分数为10%的硅油,4.6份含氢硅油,用20份经表面处理的白炭黑增强,可得到拉伸强度为3.8MPa,撕裂强度为7.6kN/m,扯断伸长率为162%的乙烯基硅橡胶。  相似文献   

17.
影响HTV硅橡胶撕裂强度的因素   总被引:2,自引:0,他引:2  
考察了白炭黑种类、羟基硅油用量、含氢硅油用量以及不同乙烯基含量生胶并用对热硫化(HTV)硅橡胶撕裂强度的影响。结果显示,气相法白炭黑的补强效果强于沉淀法白炭黑,且比表面积越大,硅橡胶的撕裂强度越高;随着羟基硅油加入量的增加,硅橡胶的撕裂强度先增后趋于稳定;含氢硅油的用量对HTV硅橡胶的撕裂强度基本没有影响;高乙烯基含量生胶和低乙烯基含量生胶并用能显著提高HTV硅橡胶的撕裂强度。较佳配方是:166 g 110-0生胶,4 g 112生胶、80 g QS-102气相法白炭黑、8.5 g羟基硅油、1.0 g含氢硅油、0.5 g乙烯基硅油,此时,HTV硅橡胶的撕裂强度达到21 KN/m。  相似文献   

18.
以高、低黏度端乙烯基硅油、端含氢硅油和侧含氢硅油等为原料,通过配方优化,制备了一种双组分加成型动力电池箱体密封用硅凝胶,并讨论了低黏度端乙烯基硅油用量、端含氢硅油用量、侧含氢硅油活性氢质量分数等对硅凝胶性能的影响。结果表明,当低黏度乙烯基硅油质量分数为12%,端含氢硅油质量分数为2. 0%,侧含氢硅油活性氢质量分数为0. 36%时,硅凝胶的综合性能最佳。在此条件下制备的硅凝胶不但能够满足动力电池箱体气密性、IPX8防水性能、UL94 V-0阻燃要求,还能够保证动力电池箱体可自动化施工,可重复拆卸和返修。  相似文献   

19.
以乙烯基硅油、白炭黑、无机疏水填料、含氢硅油、铂金催化剂、抑制剂等为原料,制得精密铸造模具硅橡胶。研究了填料种类、填料表面处理和填料配比对模具硅橡胶力学性能、存放稳定性、操作性能、尺寸稳定性和模具使用寿命的影响。较佳配方为:黏度5 000 m Pa·s的乙烯基硅油100份、气相法白炭黑15份、沉淀法白炭黑25份、经疏水处理无机填料30份。由此配方制得硅橡胶的力学性能满足模具要求,模具的线收缩率仅0.037%,耐溶剂溶胀性能优异,模具使用寿命与进口模具胶相当,存放1年后力学性能变化较小。  相似文献   

20.
以甲基三乙氧基硅烷、二乙烯基四甲基硅氧烷为原料制得乙烯基MT硅树脂;采用乙烯基MT硅树脂与八甲基环四硅氧烷共聚制得支链聚二甲基硅氧烷;以其为基础聚合物,气相法白炭黑为补强剂、含氢硅油为交联剂,在铂乙烯基配合物催化下制得加成型有机硅模具胶。结果表明,当乙烯基质量分数为0.44%时模具胶的拉伸强度出现最大值(5.3 MPa),此时支链聚二甲基硅氧烷中乙烯基MT硅树脂质量分数为1.14%;在总乙烯基质量分数为0.30%,支链聚二甲基硅氧烷的黏度为1 120 m Pa·s,乙烯基MT硅树脂用量为4 g(质量分数为0.6%)时,制得的模具胶黏度83 000 m Pa·s,硬度19度,拉伸强度5.2 MPa,伸长率690%,撕裂强度28 439 N/m,环氧树脂的翻模情况较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号