首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
异构HPL(high-performance Linpack)效率的提高需要充分发挥加速部件和通用CPU计算能力,加速部件集成了更多的计算核心,负责主要的计算,通用CPU负责任务调度的同时也参与计算.在合理划分任务、平衡负载的前提下,优化CPU端计算性能对整体效率的提升尤为重要.针对具体平台体系结构特点对BLAS(basic linear algebra subprograms)函数进行优化往往可以更加充分地利用通用CPU计算能力,提高系统整体效率.BLIS(BLAS-like library instantiation software)算法库是开源的BLAS函数框架,具有易开发、易移植和模块化等优点.基于异构系统平台体系结构以及HPL算法特点,充分利用三级缓存、向量化指令和多线程并行等技术手段优化CPU端调用的各级BLAS函数,应用auto-tuning技术优化矩阵分块参数,从而形成了HygonBLIS算法库.与MKL相比,在异构环境下,HPL算法整体性能提高了11.8%.  相似文献   

2.
当今世界的主流超级计算机越来越多地使用带有加速器的异构系统.随着加速器的浮点性能不断提高,超级计算机内计算节点的CPU、内存、总线、网络以及系统架构都要与之相适应.HPL(High Performance Linpack)是高性能计算机评测的传统基准测试程序,复杂异构系统给HPL评测带来很多机遇与挑战.针对带有GPU的异构超级计算机系统,提出一套新的CPU与加速器计算任务分配方式,提出平衡点理论指导HPL性能优化.为了优化HPL程序,提出了使用CPU与加速器协同工作的look-ahead算法和行交换连续流水算法,实现了加速器、CPU、网络等部件的高度并行.此外,为带有加速器的系统设计了新的panel分解和行交换的实现方法,提高加速器的利用率.在每个节点带有4个GPU的系统上,单节点HPL效率达到79.51%,14884节点效率达到62.22%.  相似文献   

3.
当今世界的主流超级计算机越来越多地使用带有加速器的异构系统.随着加速器的浮点性能不断提高,超级计算机内计算节点的CPU、内存、总线、网络以及系统架构都要与之相适应.HPL(high performance Linpack)是高性能计算机评测的传统基准测试程序,复杂异构系统给HPL评测带来很多机遇与挑战.针对带有GPU的异构超级计算机系统,提出一套新的CPU与加速器计算任务分配方式,提出平衡点理论指导HPL性能优化.为了优化HPL程序,提出了使用CPU与加速器协同工作的look-ahead算法和行交换连续流水算法,实现了加速器、CPU、网络等部件的高度并行.此外,为带有加速器的系统设计了新的panel分解和行交换的实现方法,提高了加速器的利用率.在每个节点带有4个GPU的系统上,单节点HPL效率达到了79.51%.  相似文献   

4.
随着异构系统成为建造超级计算机的重要选择,如何让CPU与加速器协调工作以充分发挥异构系统的计算性能具有重要意义.HPL是高性能计算领域最重要的基准测试程序,传统面向纯CPU系统的HPL算法通过加速器加速矩阵乘法的做法已经无法取得很好的性能.针对这一问题,提出了基于国产处理器-国产加速器异构系统的HPL性能模型和多线程细粒度流水HPL算法.完成了一个轻量级跨平台异构加速框架HPCX,以实现跨平台的HPL算法.该性能模型能够准确地预测类似异构系统的HPL性能.该HPL算法在NVIDIA GPU平台上性能超过了NVIDIA官方闭源nvhpl程序9%.在国产处理器-国产加速器平台512个节点的规模上,优化的HPL算法实现了2.3 PFLOPS实测峰值性能和71.1%的浮点效率.  相似文献   

5.
随着异构系统成为建造超级计算机的重要选择,如何让CPU与加速器协调工作以充分发挥异构系统的计算性能具有重要意义.HPL是高性能计算领域最重要的基准测试程序,传统面向纯CPU系统的HPL算法通过利用加速器加速矩阵乘法的做法已经无法取得很好的性能.针对这一问题,本文基于新的国产处理器-国产加速器异构系统提出了一个新的HPL性能模型,设计了一种全新的多线程细粒度异构HPL算法.我们完成了一个轻量级跨平台异构加速框架HPCX用来实现跨平台的HPL算法.我们的性能模型能够准确的预测类似异构系统的HPL性能,我们的多线程细粒度异构HPL算法在NVIDIA GPU平台上性能超过目前NVIDIA平台上性能最好的NVIDIA官方闭源nvhpl程序9%.在国产处理器-国产加速器平台512节点的规模上,我们的新HPL算法实现了2.3PFLOPS实测峰值性能和71.1%的浮点效率.  相似文献   

6.
BLAS (Basic Linear Algebra Subprograms)是一个以向量和矩阵为操作对象的基础函数库.该库中函数分为3个级别,各个级别分别提供了向量-向量(1级)、向量-矩阵(2级)、矩阵-矩阵(3级)之间的基本运算.本文研究如何在申威众核处理器上BLAS-1、2级函数的并行实现,并充分利用平台特性对它们进行深度的性能调优,归纳总结程序在申威平台上的并行实现与优化技巧.申威26010 CPU采用了异构众核架构,众多计算核心提供的大规模并行处理能力,使单块芯片具有3 TFLOPS的双精度浮点计算性能.实验结果显示BLAS-1、2级函数相对于GotoBLAS参考实现版的平均加速比分别高达11.x和6.x,对于每一优化手段,均有明显的性能加速.  相似文献   

7.
陈少虎  张云泉  张先轶  程豪 《软件学报》2010,21(Z1):214-223
BLAS 库是高性能计算中最基本的数学库,它的性能对超级计算机的性能有着极大的影响.而且随着CPU多核化的发展,BLAS 的多核并行性能已经变得比与体系结构相关的单核性能更加重要.实验以流行于高性能计算的Xeon、Opteron 系列多核X86 处理器为例,全面测试了GotoBLAS、Atlas、MKL 和ACML 四种主流的BLAS 库的所有1,2,3 级函数,并覆盖了不同计算规模和多核并行方面的测试.通过测试结果,分析源代码、BLAS 库资料和论文的方式,分析BLAS 有效的优化和并行方法,以及它们所适合的平台.为BLAS 的优化、使用,甚至高性能处理器的发展上提供有益的建议.实验结果表明,比起一个逻辑处理强大但是复杂的处理器,一个cache 更大、性能更好,内存带宽更宽、延迟更小,主频更高的处理器往往能在高性能计算中取得更好的性能.同时,X86 平台上的状况对其他体系结构也有巨大的借鉴意义.  相似文献   

8.
邓洁  赵荣彩  王磊 《计算机应用》2022,(S1):215-220
通用矩阵向量乘法(GEMV)函数是整个二级基础线性代数子程序(BLAS)函数库的构建基础,BLAS作为关键基础计算软件之一,目前在申威处理器上却没有一个高性能实现的版本。针对上述问题,为充分发挥申威1621平台的高性能BLAS库计算优势,提出一种基于申威1621的通用矩阵向量乘法的性能分析与优化方法。首先对GEMV函数进行计算重排序、循环分块的改进;然后采取单指令多数据流(SIMD)以及指令重排的优化方式;最后对内存分配方式进行择优选择。测试结果表明,GEMV函数平均性能达到GotoBLAS版的2.17倍。在使用堆栈分配内存空间或增加对y向量步长的判断分支两种方案后,相较于GotoBLAS,小规模矩阵的平均性能由2.265倍提升至2.875倍。为提高大规模矩阵的性能,以及发挥申威1621多核处理器并行机制,在开启4线程后,平均性能达到单核的3.57倍。因此,优化后的GEMV函数在申威平台上较好的体现了并行效果。  相似文献   

9.
HPL是高性能计算广泛采用的Linpack测试软件包,传统HPL算法中,求解矩阵将以块为单位循环分布到所有处理器,由于国产加速器(China Accelerator)的底层矩阵乘接口仅支持定制接口,传统HPL算法已不适合CPU+China Accelerator异构系统,因此,必须基于定制接口完成矩阵分布细致划分与封装dPEM,以提供一个通用的HPL测试配置环境;同时,为了充分发挥国产异构系统的效率,设计了异构协同矩阵乘调度算法OA4MM,以提高国产异构系统的效率。实验验证了dPEM的有效性和OA4MM算法的高效性,OA4MM较传统的异构HPL调度算法性能提升近10%。  相似文献   

10.
HPL(High Performance Linpack)是一套被广泛用于测评计算机性能的测试程序,几十年来学术界及产业界十分关注对HPL测试程序的定制化优化工作,以充分反应同时代新兴计算机平台的性能.面向当今主流多设备异构计算平台,本文尝试为HPL的优化工作提供一种新的解决方案:Hetero-HPL.在Hetero-HPL中,进程不再要求与(协)处理器一一对应,因此HPL算法在单节点独立运行情况下可以完全避免进程间数据传输开销,算法各个重要步骤有能力完全利用物理节点的所有资源,如内存容量,CPU核心,协处理器,PCI-e总线等.Hetero-HPL并不引入冗余计算量及通信量,并在任意设备数量下妥善应对锁页内存分配限制,确保多设备负载均衡和设备内的高效的大规模同质运算.在实验平台上,Hetero-HPL效率可以达到平台峰值性能的76.5%(其中矩阵乘函数效率为84%);进一步的实验表明,Hetero-HPL在多节点联机运行情况下也是一种可行的方案.  相似文献   

11.
BLAS (basic linear algebra subprograms)是最基本、最重要的底层数学库之一.在一个标准的BLAS库中,BLAS 3级函数涵盖的矩阵-矩阵运算尤为重要,在许多大规模科学与工程计算应用中被广泛调用.另外, BLAS 3级属于计算密集型函数,对充分发挥处理器的计算性能有至关重要的作用.针对国产SW26010-Pro处理器研究BLAS 3级函数的众核并行优化技术.具体而言,根据SW26010-Pro的存储层次结构,设计多级分块算法,挖掘矩阵运算的并行性.在此基础上,基于远程内存访问(remote memory access, RMA)机制设计数据共享策略,提高从核间的数据传输效率.进一步地,采用三缓冲、参数调优等方法对算法进行全面优化,隐藏直接内存访问(direct memory access, DMA)访存开销和RMA通信开销.此外,利用SW26010-Pro的两条硬件流水线和若干向量化计算/访存指令,还对BLAS 3级函数的矩阵-矩阵乘法、矩阵方程组求解、矩阵转置操作等若干运算进行手工汇编优化,提高了函数的浮点计算效率.实验结果显示,所提出的并行优化技术...  相似文献   

12.
Hardware accelerators such as general-purpose GPUs and FPGAs have been used as an alternative to conventional CPU architectures in scientific computing applications, and have achieved good speed-up results. Within this context, the present study presents a heterogeneous architecture for high-performance computing based on CPUs and FPGAs, which efficiently explores the maximum parallelism degree for processing video segmentation using the concept of dynamic textures. The video segmentation algorithm includes processing the 3-D FFT, calculating the phase spectrum and the 2-D IFFT operation. The performance of the proposed architecture based on CPU and FPGA is compared with the reference implementation of FFTW in CPU and with the cuFFT library in GPU. The performance report of the prototyped architecture in a single Stratix IV FPGA obtained an overall speedup of 37x over the FFTW software library.  相似文献   

13.
高光谱图像分类算法通常需要逐点对图像中的像素点进行迭代处理,计算复杂度及并行程度存在较大差异。随着高光谱遥感图像空间、光谱和辐射分辨率的不断提升,这些算法无法满足实时处理海量遥感图像数据的需求。通过分析NPU存储计算一体化模式与遥感图像分类算法的实现步骤,设计低功耗CPU+NPU异构资源计算架构的低秩稀疏子空间聚类(LRSSC)算法,将数据密集型计算转移至NPU,并利用NPU数据驱动并行计算和内置AI加速,对基于机器学习算法的海量遥感数据进行实时分类。受到big.LITTLE计算范式的启发,CPU+NPU异构资源计算架构由8 bit和低精度位宽NPU共同组成以提高整体吞吐量,同时减少图网络推理过程中的能量损耗。实验结果表明,与CPU计算架构和CPU+GPU异构计算架构的LRSSC算法相比,CPU+NPU异构计算架构的LRSSC算法在Pavia University遥感数据集下的计算速度提升了3~14倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号