共查询到20条相似文献,搜索用时 0 毫秒
1.
Acanthamoeba, Hartmannella, and Naegleria are free-living amoebae, ubiquitous in aquatic environments. Several species within these genera are recognized as potential human pathogens. These free-living amoebae may facilitate the proliferation of their parasitical bacteria, such as Legionella. In this study, we identified Acanthamoeba, Hartmannella, Naegleria, and Legionella using various analytical procedures and investigated their occurrence at a mud spring recreation area in Taiwan. We investigated factors potentially associated with the prevalence of the pathogens, including various water types, and physical and microbiological water quality parameters. Spring water was collected from 34 sites and Acanthamoeba, Hartmannella, Naegleria, and Legionella were detected in 8.8%, 35.3%, 14.7%, and 47.1%, respectively. The identified species of Acanthamoeba included Acanthamoeba castellanii and Acanthamoeba polyphaga. Nearly all the Hartmannella isolates are identified as Hartmannella vermiformis. The Naegleria species included Naegleria australiensis and its sister groups, and two other isolates referred to a new clade of Naegleria genotypes. The Legionella species identified included unnamed Legionella genotypes, Legionella pneumophila serotype 6, uncultured Legionella spp., Legionella lytica, Legionella drancourtii, and Legionella waltersii. Significant differences (Mann-Whitney U test, P < 0.05) were observed between the presence/absence of Hartmannella and total coliforms, between the presence/absence of Naegleria and heterotrophic plate counts, and between the presence/absence of Legionella and heterotrophic plate counts. This survey confirms that pathogenic free-living amoebae and Legionella are prevalent in this Taiwanese mud spring recreation area. The presence of pathogens should be considered a potential health threat when associated with human activities in spring water. 相似文献
2.
Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments 总被引:2,自引:0,他引:2
Floating biofilms develop at the water-air interface and harbor numerous microorganisms, some of which are human pathogens like Legionella pneumophila. The presence of Legionella spp. and especially L. pneumophila in such biofilms was investigated. In parallel, the occurrence of Naegleria spp., Acanthamoeba spp., Willaertia spp., Vahlkampfia spp. and Hartmanella spp. was determined and it was examined whether Acanthamoeba spp. isolates were naturally infected with L. pneumophila bacteria. Eight anthropogenic and 37 natural aquatic environments were sampled between June and August 2005. Both Legionella spp. and L. pneumophila were present in 100% of the floating biofilms of the anthropogenic aquatic systems. Eighty-one percent of all natural floating biofilm samples were positive for Legionella spp. and 70% of these samples were positive for L. pneumophila. Legionella concentrations were in the range of 10(1)-10(2)cells/cm(2). Naegleria spp. and Acanthamoeba spp., two well-known L. pneumophila amoeba hosts, were present in 50-92% and 67-72% of floating biofilm samples, respectively. Acanthamoeba spp. isolates appeared to be naturally infected with L. pneumophila bacteria as proved by fluorescent in situ hybridization. 相似文献
3.
Legionella is a bacterium ubiquitous to aquatic environments. Within the genus a few species are recognized as opportunistic potential human pathogens, especially the species Legionella pneumophila, which causes pneumonia legionellosis. Outbreaks of legionellosis are frequently reported by hotel guests and hospital patients, and are spread through inhaled aerosols of contaminated institutional water systems. Contaminations in hot tubs, spas and public baths are also possible. As a result, in this study, we investigated the distribution of Legionella at seven hot spring recreational areas throughout Taiwan. We gathered data on factors potentially associated with the pathogen's distribution, including environment, facility operation, and physical and microbiological water quality parameters. Spring water was collected from 91 sites and Legionella was detected in 21 (23%). The most frequently detected was L. pneumophila, followed by uncultured Legionella species, Legionella-like amoebal pathogen. Five species, L. bozemanii, L. dumoffi, L. feelei, L. lyticum and L. oakridgenesis, were all detected once. Legionella species were found in water temperatures ranging from 22 to 50 degrees C. Optimal pH appeared to be between 5.0 and 9.0. The prevalence of Legionella also coincided with the prevalence of indicator microorganisms. Legionella detection was not proportional to the frequency of cleaning. Results of this survey confirm the ubiquity of Legionella in Taiwan spring recreation areas. L. pneumophila, the organism responsible for the majority of legionellosis outbreaks, should be considered a potential public health threat in spa areas of Taiwan. 相似文献
4.
An exposure model was constructed to predict the critical Legionella densities in an engineered water system that result in infection from inhalation of aerosols containing the pathogen while showering. The model predicted the Legionella densities in the shower air, water and in-premise plumbing biofilm that might result in a deposited dose of Legionella in the alveolar region of the lungs associated with infection for a routine showering event. Processes modeled included the detachment of biofilm-associated Legionella from the in-premise plumbing biofilm during a showering event, the partitioning of the pathogen from the shower water to the air, and the inhalation and deposition of particles in the lungs. The range of predicted critical Legionella densities in the air and water was compared to the available literature. The predictions were generally within the limited set of observations for air and water, with the exception of Legionella density within in-premise plumbing biofilms, for which there remains a lack of observations for comparison. Sensitivity analysis of the predicted results to possible changes in the uncertain input parameters identified the target deposited dose associated with infections, the pathogen air-water partitioning coefficient, and the quantity of detached biofilm from in-premise pluming surfaces as important parameters for additional data collection. In addition, the critical density of free-living protozoan hosts in the biofilm required to propagate the infectious Legionella was estimated. Together, this evidence can help to identify critical conditions that might lead to infection derived from pathogens within the biofilms of any plumbing system from which humans may be exposed to aerosols. 相似文献
5.
An ultrasonic treatment system, using a TiO2 photocatalyst, was used to disinfect Legionella pneumophila. A kinetic study of the process indicates that TiO2 significantly improves the disinfection process. The concentrations of viable cells were reduced to 6% of the initial concentrations in the presence of 0.2 g/ml TiO2 after a 30 min of treatment period, while only an 18% reduction was observed in the absence of TiO2. The potency of the disinfection could be enhanced, to some extent, by increasing the amount of TiO2 used. Cell concentrations were decreased by an order of 3 within 30 min of treatment in the presence of 1.0 g/ml TiO2. The disinfection power in the presence of TiO2 versus Al2O3 was also compared and the findings showed that TiO2 induced a higher cell killing. No significant effect of initial cell concentration on the disinfection was found in the range of 102-107 CFU/ml after a 30 min of treatment period. The mechanism of cell killing was investigated by examining the effects of OH radical scavengers such as ascorbic acid, histidine and glutathione. The disinfection power was reduced in samples that contained these radical scavengers, thus indicating the importance of OH radicals. 相似文献
6.
A. Magnet S. Fenoy A.L. Galván F. Izquierdo C. Rueda C. Fernandez Vadillo C. del Aguila 《Water research》2013
Free-living amoeba such as Acanthamoeba and Balamuthia mandrillaris can act as opportunistic parasites on a wide range of vertebrates and they are becoming a serious threat to human health due to the resistance of their cysts to harsh environmental conditions, disinfectants, some water treatment practices and their ubiquitous distribution. This work was carried out in order to study the presence of these free-living amoebae (FLA) and their possible seasonality in a continental-Mediterranean climate in different types of water. For this purpose, a total of 223 water samples were collected during one year from four drinking water treatment plants (DWTP), seven wastewater treatment plants (WWTP) and six locations of influence (LI) on four river basins from Spain. Water samples were concentrated using the IDEXX Filta-Max® system and analyzed by a triplex real time PCR that detects Acanthamoeba, B. mandrillaris and Naegleria fowleri. Agar plates were also seeded for Acanthamoeba culture. From the three FLA studied, N. fowleri was not detected in any sample while B. mandrillaris was found at the entrance of a DWTP; this being, to our knowledge, the first report of these protozoa in water worldwide. On the other hand, the presence of Acanthamoeba observed was higher, 94.6% of the studied points were positive by real time PCR and 85.2% by culture, resulting in 99.1% positive for Acanthamoeba with both methods. All genetically analyzed Acanthamoeba were genotype T4 but nine different T4/DF3 sequences were observed, three of them being described for the first time, assigning new codes. No seasonal distribution of Acanthamoeba was found. These facts should serve as a warning to contact lens wearers of the risk of a poor hygiene when handling their contact lenses. It should also serve as a signal to physicians to consider FLA as a possible causative agent of nervous system infections as well as Acanthamoeba keratitis due to their high environmental presence shown in this study. 相似文献
7.
McCoy WF Downes EL Leonidas LF Cain MF Sherman DL Chen K Devender S Neville MJ 《Water research》2012,46(11):3497-3506
Most Legionella culture tests are performed on building water samples that have been shipped to analytical laboratories for analysis. Significant (≥1 log10 unit) changes in results were observed in 52% of held samples (6 h or longer, ambient temperature) drawn from building water systems in a 42-sample initial survey. It was not practical to use the spread plate protocol for on-site “t = 0” cultures in a larger, more diverse survey of thousands of building water systems. Two thousand four hundred twenty-one (2421) building water samples were split for on-site analysis using a field culture protocol and then also cultured after overnight shipment to the lab for analysis with the standardized spread plate method. Legionella test results from building water system samples are usually interpreted as ≥a numerical detection or action limit. Therefore, binary statistical analyses were calculated by setting t = 0 culture results to “true”. Overall in this survey, 10.4% of water samples sent to the laboratory for analysis returned either false-positive or false-negative results. The overall positive predictive value of results was poor (36%). Most (83%) false-positive results were returned from utility water systems. Most (74%) false-negative results were returned from potable water systems. These inaccuracies have serious implications in regard to interpretation and use of Legionella test results. The overall negative predictive value of results was excellent (99%) and also it was good (92%) for results from a polymerase chain reaction (PCR) assay that can be therefore used as a negative screening method. 相似文献
8.
Sylvain Skraber Leslie Ogorzaly Armand Maul Henry-Michel Cauchie 《Water research》2009,43(19):4780-4789
Enteroviruses and noroviruses are pathogenic viruses excreted by infected individuals. Discharged in wastewaters, some of these viruses can be captured by biofilms. In the present study, we assessed the occurrence and persistence of these viruses in wastewaters and in corresponding biofilms. Natural wastewaters and biofilms were analyzed monthly from January to July using real-time RT-PCR. Enterovirus RNA was detected in wastewater in June while norovirus RNA was detected from January to March. In contrast, biofilm analysis revealed the presence of both enterovirus and norovirus genomes throughout the study period. For instance, enterovirus and norovirus genogroups (GG) I and II were detected in 50, 46 and 37% of the biofilm samples, respectively (n = 24). In a laboratory experiment, persistence of norovirus GGI RNA (quantified using molecular techniques) and F-specific bacteriophages (quantified using both culture and molecular techniques) was assessed in wastewater and corresponding naturally-contaminated biofilms at both 4 and 20 °C. The concentrations of viral genomes (norovirus GGI and F-specific RNA phage) were very stable in biofilms. Indeed, no significant decrease was observed during the persistence experiment that lasted 49 days. Furthermore, regardless of our experimental conditions, viral genome and infectious F-specific bacteriophages persisted longer in biofilm than in wastewater. According to our results, wastewater biofilms may contribute to the persistence and dispersal of pathogenic viruses outside of epidemic periods. 相似文献
9.
Christian Napoli Roberta Iatta Fabrizio Fasano Teresa Marsico Maria Teresa Montagna 《The Science of the total environment》2009,408(2):242-244
Several approved protocols for the prevention of Legionella pneumonia base the type of intervention (to disinfect or not) on the level of contamination found (cfu/L). However, if the level of contamination by Legionella spp. of a water system fluctuates in a short period of time, inadequate sampling could lead to different decisions being made. To determine if there are significant variations in the bacterial count of Legionella spp., water samples were taken at different times from the same sites. Eight wards were selected from a large hospital in Southern Italy and a water sample was taken from 21 taps in each ward at the same time each day for 5 consecutive days.A Freidman test detected statistically significant differences in average Legionella spp. load over the 5 sampling days (p value < 0.001).This fluctuating load can have practical implications: the Italian Guidelines recommend disinfection only for a Legionella count > 10,000 cfu/L in hospitals without documented cases of disease. In the present study, the daily average loads varied, during the 5-day sampling period, above and below this cut-off (10,000 cfu/L). This means that the decision to disinfect or not would be different depending on which day the sampling was carried out. Our data suggest that, especially in health-care facilities, a single sampling would not give a realistic estimation of risk; therefore, even at lower levels of bacterial load, measures should be taken to reduce it further. 相似文献
10.
A pilot study for the Environmental Legionella Isolation Techniques Evaluation (ELITE) Program, a proficiency testing scheme for US laboratories that culture Legionella from environmental samples, was conducted September 1, 2008 through March 31, 2009. Participants (n = 20) processed panels consisting of six sample types: pure and mixed positive, pure and mixed negative, pure and mixed variable. The majority (93%) of all samples (n = 286) were correctly characterized, with 88.5% of samples positive for Legionella and 100% of negative samples identified correctly. Variable samples were incorrectly identified as negative in 36.9% of reports. For all samples reported positive (n = 128), participants underestimated the cfu/ml by a mean of 1.25 logs with standard deviation of 0.78 logs, standard error of 0.07 logs, and a range of 3.57 logs compared to the CDC re-test value. Centering results around the interlaboratory mean yielded a standard deviation of 0.65 logs, standard error of 0.06 logs, and a range of 3.22 logs. Sampling protocol, treatment regimen, culture procedure, and laboratory experience did not significantly affect the accuracy or precision of reported concentrations. Qualitative and quantitative results from the ELITE pilot study were similar to reports from a corresponding proficiency testing scheme available in the European Union, indicating these results are probably valid for most environmental laboratories worldwide. The large enumeration error observed suggests that the need for remediation of a water system should not be determined solely by the concentration of Legionella observed in a sample since that value is likely to underestimate the true level of contamination. 相似文献
11.
Krawczyk-Bärsch E Lünsdorf H Arnold T Brendler V Eisbein E Jenk U Zimmermann U 《The Science of the total environment》2011,409(16):3059-3065
The uranium mine in Königstein (Germany) is currently in the process of being flooded. Huge mass of Ferrovum myxofaciens dominated biofilms are growing in the acid mine drainage (AMD) water as macroscopic streamers and as stalactite-like snottites hanging from the ceiling of the galleries. Microsensor measurements were performed in the AMD water as well as in the biofilms from the drainage channel on-site and in the laboratory. The analytical data of the AMD water was used for the thermodynamic calculation of the predominance fields of the aquatic uranium sulfate (UO2SO4) and UO2++ speciation as well as of the solid uranium species Uranophane [Ca(UO2)2(SiO3OH)2?5H2O] and Coffinite [U(SiO4)1 − x(OH)4x], which are defined in the stability field of pH > 4.8 and Eh < 960 mV and pH > 0 and Eh < 300 mV, respectively. The plotting of the measured redox potential and pH of the AMD water and the biofilm into the calculated pH-Eh diagram showed that an aqueous uranium(VI) sulfate complex exists under the ambient conditions. According to thermodynamic calculations a retention of uranium from the AMD water by forming solid uranium(VI) or uranium(IV) species will be inhibited until the pH will increase to > 4.8. Even analysis by Energy-filtered Transmission Electron Microscopy (EF-TEM) and electron energy loss spectroscopy (EELS) within the biofilms did not provide any microscopic or spectroscopic evidence for the presence of uranium immobilization. In laboratory experiments the first phase of the flooding process was simulated by increasing the pH of the AMD water. The results of the experiments indicated that the F. myxofaciens dominated biofilms may have a substantial impact on the migration of uranium. The AMD water remained acid although it was permanently neutralized with the consequence that the retention of uranium from the aqueous solution by the formation of solid uranium species will be inhibited. 相似文献
12.
Some species of Legionella are recognized as opportunistic potential human pathogens, such as Legionella pneumophila, which causes legionnaires disease. Indeed, outbreaks of legionellosis are frequently reported in areas in which the organism has been spread via aerosols from contaminated institutional water systems. Contamination in hot tubs, spas and public baths are also possible. As a result, in this study, we investigated the distribution of Legionella at six hot spring recreation areas throughout Taiwan. Legionella were detected in all six hot spring recreation areas, as well as in 20 of the 72 samples that were collected (27.8%). Seven species of Legionella identified from samples by the direct DNA extraction method were unidentified Legionella spp., Legionella anisa, L. pneumophila, Legionella erythra, Legionella lytica, Legionella gresilensis and Legionella rubrilucen. Three species of Legionella identified in the samples using the culture method were L. pneumophila, unidentified Legionella spp. and L. erythra. Legionella species were found in water with temperatures ranging from 22.7 °C to 48.6 °C. The optimal pH appeared to range from 5.0 to 8.0. Taken together, the results of this survey confirmed the ubiquity of Legionella in Taiwan spring recreational areas. Therefore, a long-term investigation of the health of workers at hot spring recreational areas and the occurrence of Legionella in hot spring recreational areas throughout Taiwan are needed. 相似文献
13.
Bargellini A Marchesi I Righi E Ferrari A Cencetti S Borella P Rovesti S 《Water research》2011,45(6):2315-2321
The contamination of hot water samples with Legionella spp. was studied in relation to temperature, total hardness, trace element concentrations (iron, zinc, manganese, and copper) and heterotrophic plate counts (HPC) at both 22 and 37 °C. Factor analysis and receiver operating characteristic (ROC) curves were used to establish the cut-off of water parameters as predictors for Legionella contamination. Legionella spp. was isolated in 194 out of 408 samples (47.5%), with Legionella pneumophila being the most common (92.8%). After multiple logistic regression analysis, the risk for legionellae colonisation was positively associated with Mn levels >6 μg l−1, HPC at 22 °C >27 CFU l−1, and negatively with temperature >55 °C and Cu levels >50 μg l−1. Multiple regression analysis revealed that Legionella spp. counts were positively associated with Mn, HPC at 37 °C and Zn and negatively associated with temperature. Only 1 out of the 97 samples (1%) having a Mn concentration, an HPC at 22 °C and an HPC at 37 °C below the respective median values exhibited a Legionella spp. concentration exceeding 104 CFU l−1vs. 41 out of the 89 samples (46.1%) with the three parameters above the medians. Our results show a qualitative and quantitative relationship between Legionella spp., the Mn concentration and heterotrophic plate counts in hot water samples from different buildings, suggesting that these parameters should be included in a water safety plan. The role of manganese in biofilm formation and its possible involvement in the mechanisms favouring Legionella survival and growth in water niches should be investigated further. 相似文献
14.
While it is well-established that Legionella are able to colonize engineered water systems, the number of interacting factors contributing to their occurrence, proliferation, and persistence are unclear. This review summarizes current methods used to detect and quantify legionellae as well as the current knowledge of engineered water system characteristics that both favour and promote legionellae growth. Furthermore, the use of quantitative microbial risk assessment (QMRA) models to predict potentially critical human exposures to legionellae are also discussed. Understanding the conditions favouring Legionella occurrence in engineered systems and their overall ecology (growth in these systems/biofilms, biotic interactions and release) will aid in developing new treatment technologies and/or systems that minimize or eliminate human exposure to potentially pathogenic legionellae. 相似文献
15.
Both Shigella spp. and enteroinvasive Escherichia coli (EIEC) are important human pathogens that are responsible for the majority of cases of endemic bacillary dysentery. However, they are difficult to identify and differentiate by biochemical tests or molecular methods alone. In this study, we developed a procedure to detect Shigella spp. and EIEC from environmental water samples using membrane filtration followed by nutrient broth enrichment, isolation using selective culture plates, and identification of the invasion plasmid antigen H (ipaH) gene by PCR amplification and DNA sequencing. Finally, we used a biochemical test and a serological assay to differentiate between Shigella and EIEC. Among the 93 water samples from nine reservoirs and one watershed, 76 (81.7%) water samples of culture plates had candidate colonies of Shigella and EIEC and 5 water samples were positive (5.4%) for a Shigella- and EIEC-specific polymerase chain reaction targeting the ipaH gene. Guided by the molecular method, the biochemical test, and the serological assay, 11 ipaH gene-positive isolates from 5 water samples were all identified as EIEC. 相似文献
16.
Single filaments of Planktothrix spp. were isolated from laboratory cultures of P. agardhii (NIES 595) and P. rubescens (SL 03) and from four freshwater lakes in England and Turkey. Filament lengths were measured and microcystins were extracted by freeze-thawing and boiling. Microcystin analysis of the isolated single filaments was performed by ELISA using antibodies raised against microcystin-LR with a minimum detection limit (MDL) of 11 pg filament(-1). In some cases a high percentage of the filaments from the environmental samples and laboratory cultures were below the MDL of the assay. Based on the filaments with detectable microcystin contents, P. agardhii from Bassenthwaite Lake (England) had the lowest mean microcystin concentration (0.7 fg microm(-3)), and the highest microcystin concentration (2.9 fg microm(-3)) was measured in P. rubescens from Iznik Lake (Turkey). We investigated the relationship for filaments with microcystin contents above MDL and their biovolume. Relationships varied widely although P. agardhii from Bassenthwaite showed a better (positive) relationship between filament biovolume and microcystin content than P. rubescens from environmental samples. Under culture conditions, P. rubescens showed a good relationship between filament biovolume and toxin content. 相似文献
17.
Research and characterization of pathogenic vibrios from bathing water along the Conero Riviera (Central Italy) 总被引:2,自引:0,他引:2
The occurrence and pathogenicity of vibrios in bathing water were investigated along the Conero Riviera (Adriatic Sea, Central Italy). Vibrio spp. enumeration was performed on thiosulfate-citrate-bile-salts-sucrose-agar by the membrane filter method, and identification was done through a biochemical protocol. All isolates were tested for the presence of cytotoxicity, protease, lipase, elastase, gelatinase, urease, haemolytic activity, ctx, tdh and trh genes by conventional methods. In all, 200 vibrios were isolated from 132 samples that were analysed. Vibrio harveyi and Vibrio alginolyticus were the species most frequently recovered. All strains were cytotoxic and some of them showed protease, gelatinase, lipase, elastase, urease and haemolytic activity. One isolate of V. alginolyticus and one of V. harveyi had the trh gene, while another strain of V. harveyi and one of Vibrio parahaemolyticus had the ctx gene. These results demonstrate the presence of potentially pathogenic vibrios in the Conero Riviera and the risk of infection due to bathing water exposure. 相似文献
18.
Photoreactivation of Legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp 总被引:5,自引:0,他引:5
Photoreactivation of Legionella pneumophila after the inactivation by low-pressure (LP) or medium-pressure (MP) UV lamp was investigated in comparison with that of Escherichia coli. An endonuclease sensitive site (ESS) assay was used to determine the number of UV-induced pyrimidine dimers in the genome DNA of L. pneumophila or E. coli, while the survival ratio of each bacterium was also investigated by cultivation methods. L. pneumophila performed photoreactivation with almost complete repair of pyrimidine dimers associated with the quick recovery of survival ratio. A 3 log inactivation of L. pneumophila by LP or MP UV lamp was, respectively, resulted in 0.5 log or 0.4 log inactivation when photoreactivation was completed. Interestingly, L. pneumophila performed equivalent photoreactivation after LP and MP UV lamp exposures while photoreactivation of E. coli was significantly repressed after the inactivation by MP UV lamp. This study indicated that an attention would be required to design and operate a UV disinfection system targeting L. pneumophila. It was further implied that E. coli would not correctly indicate the fate of L. pneumophila in UV disinfection systems when photoreactivation takes place. 相似文献
19.
Distribution of bacteria in a domestic hot water system in a Danish apartment building 总被引:1,自引:0,他引:1
Bacterial growth in hot water systems seems to cause problems such as bad odor of the water, skin allergies and increased heat transfer resistance in heating coils. In order to establish a basis for long-term suppression of bacterial growth, we studied the distribution of bacteria in a Danish domestic hot water system. Heterotrophic plate counts (HPC) were measured in both water and biofilm samples from various sampling sites in the system. In hot water samples, where the temperature was 55-60 degrees C, the HPC were 10(3)-10(4)CFU/mL at incubation temperatures of 25 degrees C or 37 degrees C and 10(5)CFU/mL at 55 degrees C or 65 degrees C. In the cold water (10 degrees C) supplying the hot water system, the HPC at 25 degrees C or 37 degrees C was lower than in the hot water, and no bacteria were found after incubation at 55 degrees C or 65 degrees C. HPC constituted from 38% to 84% of the AODC results in hot water but only 2% in cold water, which showed a high ratio of culturable bacteria in hot water. Biofilm samples from the hot water tank and the inner surface of the pipes in the cold and hot water distribution system were collected by specially designed sampling devices, which were exposed in the system for 42 days. The quasi-steady-state number of bacteria in the biofilm, measured as the geometric mean of the HPC obtained between 21 and 42 days, was five-fold higher in the hot water pipe (13x10(5)CFU/cm(2) at 55 degrees C) than in the cold water pipe (2.8x10(5)CFU/cm(2) at 25 degrees C). There was no significant difference between the number of bacteria in the biofilm samples from the top, middle and bottom of the hot water tank, and the number of bacteria in the biofilm counted at 55 degrees C ranged from 0.6x10(4) to 1.7x10(4)CFU/cm(2). The surfaces of the sacrificial aluminum anodes and the heating coils in the hot water tank also contained high bacterial numbers. The measured number of bacteria in water and biofilm samples was related to the dimensions of the hot water system, and calculations showed that the majority of bacteria (72%) were located in the biofilm especially in the distribution system, which accounts for the greatest surface area. Free-living bacteria accounted for 26% and only a minor part of the bacteria were in the sludge in the hot water tank (2%). 相似文献
20.
A fish farm sludge high in P (2-6% w/w as dry matter), Fe (5-7%), C (40-50%) and N (0.8-4%) was subjected to a series of acid leaching treatments using HCl, organic acids, and biologically mediated acid production. Additions of biodegradable organic acid solubilized heavy metals better than HCl, while additions of 1.5% w/v glucose followed by 7 day incubation stabilized the sludge releasing 92% P, 100% Fe. The use of homo-lactic Lactobacillus plantarum starter cultures were more effective than hetero-lactic Lactobacillus buchneri, solubilizing 81.9% P, 92.2% Fe, 93.0% Zn and 96.4% Ca in the sludge. The anaerobic sludge-glucose fermentation using L. plantarum produced a leached sludge that has low heavy metal and nutrient content while affording the recovery of nutrients. The potential of these methods for practical application are briefly discussed. 相似文献