首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present.  相似文献   

2.
This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the ζ-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO4 were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water.  相似文献   

3.
Tang Z  Hong S  Xiao W  Taylor J 《Water research》2006,40(5):943-950
The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium inhibited lead release to a lesser degree than sulfates. An additional 3-month field study isolated and verified the effects of chlorides and sulfates on lead release. Lead release decreased with increasing pH and increasing alkalinity during the 1-year pilot study; however, the effects of pH and alkalinity on lead release, were not clearly elucidated due to confounding effects. A statistical model was developed using nonlinear regression, which showed that lead release increased with increasing chlorides, alkalinity and temperature, and decreased with increasing pH and sulfates. The model indicated that primary treatment processes such as enhanced coagulation and RO (reverse osmosis membrane) were related to lead release by water quality. Chlorides are high in RO-finished water and increase lead release, while sulfates are high following enhanced coagulation and decrease lead release.  相似文献   

4.
F Yang  B Shi  J Gu  D Wang  M Yang 《Water research》2012,46(16):5423-5433
The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing “discolored water” issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion products obtained from pipes transporting groundwater had higher levels of Br, Ti, Ba, Cu, Sr, V, Cr, La, Pb and As.  相似文献   

5.
The oxygen release rate into the rhizosphere by a floating aquatic plant-water lettuce-was determined under various light intensities (0.0-1.2x10(5)lx) and water temperatures (10-35 degrees C). The net specific oxygen release rate was expressed by a model equation comprising the gross oxygen release rate and the rhizosphere respiration terms. Experimental and simulated results show that the net specific oxygen release rate increased with light intensity up to the optimal value, but slight inhibition by higher light intensities was observed at 10-20 degrees C. With increased water temperature, the respiration rate became larger than the gross oxygen release rate. The maximum net specific oxygen release rate of 11.0-12.5mg-O(2)kg-wet(-1)h(-1) was obtained at the optimal condition of about 25 degrees C and 9.0x10(4)-1.1x10(5)lx. The net oxygen release rate was negligible at 35 degrees C at any light intensity because the respiration rate was much greater than the gross oxygen release rate into the rhizosphere.  相似文献   

6.
A field study was performed in a building complex to investigate the extent and sources of lead (Pb) release in tap water and brass material was found to be the main contributor in the very first draw (250 mL). Based on these results, a pilot installation was built to study Pb leaching from old and new faucets in the presence and absence of a connection to Cu piping. Four water quality conditions were tested: i) no treatment; ii) addition of 0.8 mg P/L of orthophosphate; iii) pH adjustment to 8.4; and iv) adjustment to a higher chloride to sulfate mass ratio (CSMR; ratio from 0.3 to 2.9). Pb concentrations in samples taken from the faucets without treatment ranged from 1 to 52 μg/L, with a mean of 11 μg/L. The addition of orthophosphate @ 0.8 mg P/L (OrthoP) was the most effective treatment for all types of faucets tested. On average, OrthoP reduced mean Pb leaching by 41%, and was especially effective for new double faucets (70%). In the presence of orthophosphates, the relative proportion of particulate Pb (Pbpart) (>0.45 μm) increased from 31% to 54%. However, OrthoP was not efficient to reduce Zn release. The higher CSMR condition was associated with greater dezincification of yellow brass but not of red brass. Corrosion control treatment influenced Pb concentration equilibrium, directly impacting maximal exposure. Significantly higher Pb release (3 fold) was observed for 1 of the 8 faucets connected to Cu exposed to high CSMR water, suggesting the presence of galvanic corrosion.  相似文献   

7.
A bibliometric analysis based on Science Citation Index (SCI) published by Institute of Scientific Information (ISI) was carried out to identify the global research related to lead in drinking water field from 1991 to 2007 and to improve the understanding of research trends in the same period. The results from this analysis indicate that there have been an increasing number of annual publications mainly during two periods: from 1992 to 1997 and from 2004 to 2007. United States produced 37% of all pertinent articles followed by India with 8.0% and Canada with 4.8%. Science of the Total Environment published the most articles followed by Journal American Water Works Association and Toxicology. Summary of the most frequently used keywords are also provided. “Cadmium” was the most popular author keyword in the 17 years. Furthermore based on bibliometric results four research aspects were summarized in this paper and the historical research review was also presented.  相似文献   

8.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

9.
Zeng H  Arashiro M  Giammar DE 《Water research》2008,42(18):4629-4636
Arsenate removal from water using an iron oxide-based sorbent was investigated to determine the optimal operating conditions and the influence of water composition on treatment efficiency. The novel sorbent with a high surface area was studied in flow-through column experiments conducted at different flow rates to quantify the effect of empty bed contact time (EBCT) on treatment performance. Arsenic removal efficiency declined with decreasing EBCT. Arsenic breakthrough curves at different EBCT values were successfully simulated with a pore and surface diffusion model (PSDM). Surface diffusion was the dominant intraparticle mass transfer process. The effect of water composition on arsenic removal efficiency was evaluated by conducting experiments with ultrapure water, ultrapure water with either phosphate or silica, and a synthetic groundwater that contained both phosphate and silica. Silica was more inhibitory than phosphate, and the silica in synthetic groundwater controlled the arsenic removal efficiency.  相似文献   

10.
High lead levels in drinking water are still a concern for households serviced by lead pipes in many parts of North America and Europe. This contribution focuses on the effect of pH on lead concentrations in drinking water delivered through lead pipes. Though this has been addressed in the past, we have conducted a combined batch, pipe loop and sentinel study aiming at filling some of the gaps present in the literature. Exhumed lead pipes and water quality data from the City of London’s water distribution system were used in this study. As expected, the lead solubility of corrosion scale generally decreased as pH increased; whereas dissolution of other accumulated metals present in the corrosion scale followed a variety of trends. Moreover, dissolved arsenic and aluminum concentrations showed a strong correlation, indicating that the aluminosilicate phase present in the scale accumulates arsenic. A significant fraction of the total lead concentration in water was traced to particulate lead. Our results indicate that particulate lead is the primary contributor to total lead concentration in flowing systems, whereas particulate lead contribution to total lead concentrations for stagnated systems becomes significant only at high water pH values.  相似文献   

11.
Wang H  Hu C  Hu X  Yang M  Qu J 《Water research》2012,46(4):1070-1078
The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers.  相似文献   

12.
Cui H  Qian Y  An H  Sun C  Zhai J  Li Q 《Water research》2012,46(12):3943-3950
A novel poly(aniline-co-o-aminophenol) (PAOA) modified carbon felt electrode reactor was designed and investigated for fluoride removal from aqueous solutions. This reactor design is innovative because it operates under a wider pH range because of coating with a copolymer PAOA ion exchange film. In addition, contaminant mass transfer from bulk solution to the electrode surface is enhanced by the porous carbon felt as an electron-conducting carrier material compared to other reactors. The electrically controlled anion exchange mechanism was investigated by X-ray photoelectron spectroscopy and cyclic voltammetry. The applicability of the reactor in the field was tested through a series of continuous flow experiments. When the flow rate and initial fluoride concentration were increased, the breakthrough curve became sharper, which lead to a decrease in the breakthrough time and the defluoridation capacity of the reactor. The terminal potential values largely influenced fluoride removal by the reactor and the optimal defluoridation efficiency was observed at around 1.2 V. The breakthrough capacities were all >10 mg/g over a wide pH range (pH 5-9) with an initial fluoride concentration of 10 mg/L. Consecutive treatment-regeneration studies over a week (once each day) revealed that the PAOA-modified carbon felt electrode could be effectively regenerated for reuse. The PAOA-modified carbon felt electrode reactor is a promising system that could be made commercially available for fluoride removal from aqueous solutions in field applications.  相似文献   

13.
《Urban Water Journal》2013,10(9):837-846
ABSTRACT

A multi-objective optimization methodology is proposed herein for accurate identification of leakage in water distribution networks (WDNs) using pressure and flow sensors. We first model leakage at potential nodes using the EPANET software, and then divide WDN into near-homogenous zones using k-means clustering algorithm based on geographic distribution of nodes. Finally, flow and pressure sensors locations are optimized using the NSGA-II algorithm to identify the leakage zone accurately. Novelty of the proposed approach lies in sequential optimization of flow and pressure sensors placement, which helps improve the accuracy of leakage zone identification in WDNs. The objective functions of this study are: 1) maximizing accuracy of identified leakage zone and 2) minimizing number of sensors (and hence operational costs). Simulation results of the Mesopolis WDN corroborate the efficiency and effectiveness of the proposed approach.  相似文献   

14.
This study examines the effects of timber preservative spillages on the ecology of the River Lossie whilst the river's quality was recovering following the removal of an unsatisfactory discharge of sewage effluent. The effects of spillages on a minor tributary of the River Lossie are also presented.  相似文献   

15.
Major ion chemistry and dissolved inorganic carbon system (DIC, mainly HCO3 and gaseous CO2) in the Luodingjiang River, a mountainous tributary of the Zhujiang (Pearl River), China, were examined based on a seasonal and spatial sampling scheme in 2005. The diverse distribution of lithology and anthropogenic impacts in the river basin provided the basic idea to assess the effects of lithology vs. human activities on water chemistry and carbon biogeochemistry in river systems. Major ions showed great spatial variations, with higher concentrations of total dissolved solids (TDS) and DIC in the regions with carbonate rocks and clastic sedimentary rocks, while lower in the regions with metamorphic sandstones and schists as well as granites. pCO2 at all sampling sites was oversaturated in June, ranging with a factor from 1.6 to 18.8 of the atmospheric concentration, reflecting the enhanced contribution from baseflow and interflow influx as well as in situ oxidation of organic matter. However, in April and December, undersaturated pCO2 was found in some shallow, clean rivers in the upstream regions. δ13C of DIC has a narrow range from − 9.07 to − 13.59‰, which was more depleted in the regions with metamorphic rocks and granites than in the carbonate regions. Seasonally, it was slightly more depleted in the dry season (December) than in the wet season (June). The results suggested that lithological variability had a dominant control on spatial variations of water chemistry and carbon geochemistry in river systems. Besides, anthropogenic activities, such as agricultural and urban activities and in-stream damming, as well as river physical properties, such as water depth and transparency, also indicated their impacts. The seasonal variations likely reflected the changes of hydrological regime, as well as metabolic processes in the river.  相似文献   

16.
The effects of the initial void ratio and the grain size distribution (GSD) on the water retention properties of a compacted infilled joint soils from Beihetan (China) were investigated. Three initial void ratios (0.3, 0.4, and 0.5) and three GSDs were selected based on the in situ soil states. A total of nine drying water retention curves (WRCs) was established with the filter paper method. The microstructure of the specimens was also studied to better understand the water retention properties. It was found that the denser samples underwent smaller volume changes, and that the volumetric strain increased with the increasing clay size fraction. The void ratio had a significant effect on the WRCs in terms of the degree of saturation; however, the WRCs were independent of the void ratio in terms of the gravimetric water content. In terms of the degree of saturation, the WRCs were seen to shift upwards with the increase in clay size fraction, indicating an increase in the water retention capacity. The results from mercury intrusion porosimeter (MIP) tests revealed that the difference in the inter-aggregate pores is the main reason for the different shapes of the WRCs. Moreover, the infilled joint soils with lower void ratios and coarser particles were found to be more suitable for MIP-based evaluations of water retention properties.  相似文献   

17.
This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal–NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water.  相似文献   

18.
A photocatalytic reactor membrane pilot system, employing UV/TiO2 photocatalysis, was evaluated for its ability to remove thirty-two pharmaceuticals, endocrine disrupting compounds, and estrogenic activity from water. Concentrations of all compounds decreased following treatment, and removal followed pseudo-first-order kinetics as a function of the amount of treatment. Twenty-nine of the targeted compounds in addition to total estrogenic activity were greater than 70% removed while only three compounds were less than 50% removed following the highest level of treatment (4.24 kW h/m3). No estrogenically active transformation products were formed during treatment. Additionally, the unit was operated in photolytic mode (UV only) and photolytic plus H2O2 mode (UV/H2O2) to determine the relative amount of energy required. Based on the electrical energy per order (EEO), the unit achieved the greatest efficiency when operated in photolytic plus H2O2 mode for the conditions tested.  相似文献   

19.
An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV254 absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications.  相似文献   

20.
Due to seasonal climate alterations, the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles. The X-ray micro computed tomography (micro-CT) acted as a non-destructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles. Subsequently, the variations of pore distribution and permeability due to dry-wet cycling effects were revealed based on three-dimensional (3D) pore distribution analysis and seepage simulations. According to the results, granite residual soils could be separated into four different components, namely, pores, clay, quartz, and hematite, from micro-CT images. The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during dry-wet cycles. The values of porosity and connectivity are positively correlated with the number of dry-wet cycles, which were expressed by exponential and linear functions, respectively. The pore volume probability distribution curves of granite residual soil coincide with the χ2 distribution curve, which verifies the effectiveness of the assumption of χ2 distribution probability. The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes, i.e. micropores, mesopores, macropores, and cracks. From a quantitative and visual perspective, considerable small pores are gradually transformed into cracks with a large volume and a high connectivity. Under the action of dry-wet cycles, the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly, as well as the permeability and hydraulic conductivity. The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general, verifying the accuracy of seepage simulations based on micro-CT results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号