首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this full‐scale study is to determine the treatment performance of the activated sludge process for treating low strength municipal wastewater. The plant is located in Painesville, Ohio, and discharges its treated effluent into Grand River. The average plant wastewater flow was 3.43 MGD (million gallons per day). The plant performance was evaluated for a 12‐month period in 1989. The low strength municipal wastewater contained 104 mg/L TSS (total suspended solids), 105 mg/L BOD (biochemical oxygen demand), 17.76 mg/L TKN (total kjeldahl nitrogen), 9.66 mg/L NH3‐N, and 3.90 mg/L P (phosphorus). The treatment performance after various degrees of treatment is as follows: primary treatment: 30% BOD and 54% TSS removal, secondary treatment: 97% BOD and 87% TSS removal, and tertiary treatment: 98% BOD and 98% TSS removal. The primary effluent contained 73 mg/L BOD and 48 mg/L TSS; the secondary effluent contained 3 mg/L BOD and 13 mg/L TSS; and the final effluent contained 2 mg/L BOD and 2 mg/L TSS. The effluent contained 0.22 mg/L NH3‐N and 0.49 mg/L P, which were far below the US EPA standard of 10 mg/L BOD, 10 mg/L TSS, 1 mg/L NH3‐N, and 1 mg/L P.  相似文献   

2.
Microalgal biofilms have so far received little attention as post-treatment for municipal wastewater treatment plants, with the result that the removal capacity of microalgal biofilms in post-treatment systems is unknown. This study investigates the capacity of microalgal biofilms as a post-treatment step for the effluent of municipal wastewater treatment plants. Microalgal biofilms were grown in flow cells with different nutrient loads under continuous lighting of 230 μmol/m2/s (PAR photons, 400-700 nm). It was found that the maximum uptake capacity of the microalgal biofilm was reached at loading rates of 1.0 g/m2/day nitrogen and 0.13 g/m2/day phosphorus. These maximum uptake capacities were the highest loads at which the target effluent values of 2.2 mg/L nitrogen and 0.15 mg/L phosphorus were still achieved. Microalgal biomass analysis revealed an increasing nitrogen and phosphorus content with increasing loading rates until the maximum uptake capacities. The internal nitrogen to phosphorus ratio decreased from 23:1 to 11:1 when increasing the loading rate. This combination of findings demonstrates that microalgal biofilms can be used for removing both nitrogen and phosphorus from municipal wastewater effluent.  相似文献   

3.
A laboratory scale anaerobic filter packed with synthetic high surface area trickling filter media was used to treat a low strength domestic wastewater averaging 288 mg 1−1 COD. The filter was operated for 60 days after reaching steady-state at 20, 25, 35°C at a loading rate of 0.02 lb COD ft−3 day−1 and 24 h hydraulic retention time. Filter effluent BOD5 averaged 38 mg 1−1 providing an average removal rate of 79%, and effluent COD averaged 78 mg 1−1, corresponding to a 73% removal rate. Removal efficiencies showed very little sensitivity to daily fluctuations in influent wastewater quality. The filter performance at 25 and 35°C was not significantly different, but BOD and TSS removal efficiency declined a: 20°C. Gas production averaged 0.027 ft−3 of gas per ft3 of influent wastewater, or 1.875 ft3 of gas per pound of influent COD. Gas composition averaged 30% nitrogen, 65% methane, and 5% carbon dioxide. Ammonia nitrogen and sulfides both increased during treatment. It is concluded that the anaerobic filter is a promising candidate for treatment of low strength wastewaters and that post treatment for sulfides and ammonia may be necessary.  相似文献   

4.
Role of aquatic plants in wastewater treatment by artificial wetlands   总被引:12,自引:0,他引:12  
This report describes investigations using artificial wetlands which quantitatively assess the role of each of three higher aquatic plant types, Scirpus validus (bulrush), Phragmites communis (common reed) and Typha latifola (cattail), in the removal of nitrogen (via sequential nitrification-denitrification), BOD and TSS from primary municipal wastewaters. During the period August 1983–December 1984, the mean ammonia concentration of 24.7 mg l−1 in the primary wastewater inflow (hydraulic application rate = 4.7 cm day−1) was reduced to mean effluent levels of 1.4 mg l−1 for the bulrush bed, 5.3 mg l−1 for the reed bed and 17.7 mg l−1 for the cattail bed, as compared to a mean value of 22.1 mg l−1 for the unvegetated (control) bed. For all three vegetated beds, the mean effluent ammonia values were significantly below that for the unvegetated bed and for the inflow. The bulrushes and reeds (in that order) proved to be superior at removing ammonia, both with mean effluent levels significantly below that for the cattail bed. The high ammonia-N (and total N) removal efficiencies shown by the bulrush and reed beds are attributed to the ability of these plants to translocate O2 from the shoots to the roots. The oxidized rhizosphere so formed stimulates sequential nitrification-denitrification. Similarly BOD removal efficiencies were highest in the bulrush and reed beds, both with mean effluent BOD levels (5.3 and 22.2 mg l−1, respectively) significantly below that for the unvegetated bed (36.4 mg l−1) and equal to or better than secondary treatment quality (30 mg l−1). Our results demonstrate that higher aquatic plants can indeed play a significant role in secondary and advanced (N removal) wastewater treatment by wetland systems, a role that is completely distinct from that associated with their pollutant uptake capacity.  相似文献   

5.
The residuals of the bamboo pulping wastewater were analysed systematically. The COD (chemical oxygen demand) decreased significantly by adding appropriate coagulant (1.5 kg/m3 10% Al2 (SO4)3 as coagulant and 2 mg/L anionic PAM as coagulant aid) to the effluent in secondary sedimentation tank. The study found that hydrolytic bacteria in primary sedimentation tank and balancing tank may increase the ratio of BOD/COD and promote the release of ammonia nitrogen (NH3‐N), which was benefit to further degradation of organic pollutants by aerobic biological treatment. Through optimizing biochemical process and adjusting contents of nitrogen, phosphorus, and mineral elements, the effects of wastewater treatment has been greatly enhanced and the quality of discharged water could met the new national standard GB3544‐2008.  相似文献   

6.
This work aimed to assess the technical and energetic feasibility of a passively aerated laboratory-scale trickling filter, configured as a two-stage system, to produce urban wastewater (UWW) reusable in agriculture. The trickling filter was fed continuously with high-strength UWW at four hydraulic retention times (HRTs), that is, 10, 5, 2 and 1 day, corresponding to organic loading rates (OLRs) of 0.1, 0.2, 0.5 and 0.9 kg COD/m3/d, respectively. The results revealed a good performance in organic load removal and nitrification at the four HRTs. The trickling filter showed high organic pollutant removal efficiencies of up to 93%, 94% and 98% for chemical oxygen demand (COD), BOD5 and total suspended solid (TSS), respectively, as well as high ammonia nitrogen removal above 96% at the shortest HRT of 1 day. All physicochemical parameters were significantly lower than the allowable limits set out in ISO 16075 for category C (non-food crop irrigation) irrigation water. The reuse of treated UWW in irrigation led to germination indexes and growth parameters of triticale (Triticosecale Wittm.) almost equal to those obtained using tap water. Energy use was found to be about 0.2754 kWh/m3 of treated wastewater, making it competitive with trickling filter plants reported in the literature. The simplicity and energy efficiency of the developed trickling filter system, combined with its capacity for almost full nitrification, make it appealing for sewage treatment in small communities in developing countries.  相似文献   

7.
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m3 reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m3/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m2d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms’ activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction.  相似文献   

8.
Soil aquifer treatment of artificial wastewater under saturated conditions   总被引:2,自引:0,他引:2  
A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L−1-135 mg L−1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d−1-1780 mg d−1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency.  相似文献   

9.
The treatment efficiency and membrane performance of a granular and suspended growth anaerobic membrane bioreactor (G-AnMBR and AnMBR respectively) were compared and evaluated. Both anaerobic MBRs were operated in parallel during 250 days with low strength wastewater and under UK weather conditions. Both systems presented COD and BOD removal efficiencies of 80–95% and >90% respectively. Effluent BOD remained between 5 and 15 mgBOD L−1 through the experimental period while effluent COD increased from 25 mg L−1 to 75 mg L−1 as temperature decreased from 25 °C to 10 °C respectively indicating the production of non biodegradable organics at lower temperatures. Although similar levels of low molecular weight organics were present in the sludge supernatant, recycling of the mixed liquor from the membrane tank to the bioreactor at a low upflow velocity enhanced interception of solids in the sludge bed of the G-AnMBR limiting the solid and colloidal load to the membrane as compared to the suspended system. Results from flux step test showed that critical flux increased from 4 to 13 L m−2 h−1 and from 3 to 5 L m−2 h−1 with gas sparging intensities varying from 0.007 m s−1 to 0.041. Additional long term trials in which the effect of gas sparging rate and backwashing efficiency were assessed confirmed the lower fouling propensity of the G-AnMBR.  相似文献   

10.
Appropriate wastewater technologies and sound management are crucial to global water quality and conservation. The integrated algal pond system (IAPS), considered an efficient, passive and low-cost wastewater treatment technology for peri-urban spaces, is perceived to yield a final effluent unsuitable for discharge. Experiments were carried out to challenge the prevailing perception that algal-based wastewater treatment processes and in particular IAPS produce an effluent that does not always meet national and/or regional regulatory standards. Formation of a microalgal–bacterial floc (MaB-flocs) and settleability together with biomass removal from algal settling ponds (ASPs) is shown to reduce total suspended solids (TSS) from >50 to <20 mg L−1. Thus, production of a readily settleable MaB-floc coupled with removal of settled biomass from ASP ensures that final effluent TSS remains below the general limit of 25 mg L−1 and yields an effluent suitable for either irrigation or discharge.  相似文献   

11.
Efficient biological nitrogen removal from pharmaceutical wastewater has been focused recently. The present study dealt with the treatment of colistin sulfate and kitasamycin manufacturing wastewater through anaerobic ammonium oxidation (ANAMMOX). The biotoxicity assay on luminescent bacterium Photobacterium phosphoreum (T3 mutation) showed that the pharmaceutical wastewater imparted severe toxicity with a relative luminosity of 3.46% ± 0.45%. During long-term operation, the cumulative toxicity from toxic pollutants in wastewater resulted in the performance collapse of conventional ANAMMOX process. A novel ANAMMOX process with sequential biocatalyst (ANAMMOX granules) addition (SBA-ANAMMOX process) was developed by combining high-rate ANAMMOX reactor with sequential biocatalyst addition (SBA). At biocatalyst addition rate of 0.025 g VSS (L wastewater)−1 day−1, the nitrogen removal rate of the process reached up to 9.4 kg N m−3 day−1 in pharmaceutical wastewater treatment. The effluent ammonium concentration was lower than 50 mg N L−1, which met the Discharge Standard of Water Pollutants for Pharmaceutical Industry in China (GB 21903-2008). The application of SBA-ANAMMOX process in refractory ammonium-rich wastewater is promising.  相似文献   

12.
Wastewater samples were collected from five streams among two coke plants and characterized by high pressure liquid chromatography and gas chromatographic mass spectrometry. Wastewater streams included the ammonia still influent, ammonia still effluent and biological oxidation effluent. Samples collected from these streams were separated into liquid and suspended solid phases and each phase was analyzed for eleven polycyclic aromatic hydrocarbons (PAH). Total wastewater concentrations for these compounds ranged from about 2000 μg l−1 in the ammonia still influent to 5–120 μg l−1 in the biological oxidation effluent. Wastewater PAH were partitioned between liquid and suspended solid phases, and in most samples suspended solid phase PAH accounted for approx. 80% or more of total wastewater PAH. Partitioning in the biological oxidation effluent stream was correlated with aqueous solubility and n-octanol/water partition coefficients. Wastewater treatment consisting of sedimentation, ammonia stripping, and biological oxidation generally reduced liquid phase PAH concentrations to the range of 1 μg l−1 or less. Effective removal of wastewater suspended solids will reduce total effluent PAH concentrations, hence there is need to address issues regarding removal of residual wastewater suspended material including characterization of the distribution of PAH with respect to suspended particle size.  相似文献   

13.
The performance of a multistage passively aerated biological filter (PABF) packed with Nonwoven polyester fabric (NWPF) for municipal wastewater treatment was investigated under different operating conditions. The system was operated at different hydraulic retention times (HRTs) of 2.3, 1.72 and 1.38 h and corresponding to organic loading rates (OLRs) of 1.77, 2.15 and 2.9 kg BOD/m3. d. Increasing HRT and decreasing OLR, increased dissolved oxygen (DO) and consequently increased the removal rate of organic matters (87%), suspended solids (95.8%) and ammonia (88%). Profile results from different compartments showed that the major part of organic and suspended matters was removed in the upper layers of the system, whereas most of the suspended solids were trapped, while the nitrification process took place in the lower part of the PABF system because of the increase in DO concentrations. The results proved the advantage of using NWPF. It has pleated and rough surface which retain more biomass compared with plain surface. Excess biomass produced from PABF was negligible compared to conventional treatment systems.  相似文献   

14.
Hu Z  Gagnon GA 《Water research》2006,40(7):1474-1480
The main objective of this paper was to evaluate the effectiveness of silica sand, crushed glass, peat, and geotextile as a medium in RBFs in the removal for organic matter, nutrients and bacteria from domestic wastewater based on a field-scale study. In particular, this field-scale study was conducted to treat domestic wastewater from a small community of 10 households from the Municipality of Lunenburg, Nova Scotia, Canada. The average influent 5d biochemical oxygen demand (BOD(5)) and total suspended solids (TSS) concentrations into the field filter system were 381+/-64 (mean+/-standard deviation) and 46+/-21 mg/L, respectively. The results showed that crushed glass could be an effective medium in RBFs since the crushed glass filter produced stable effluent BOD(5) and TSS concentrations of less than 20mg/L. Geotextile was found to be another successful alternative filter medium with the effluent BOD(5) and TSS of 18+/-11 and 11+/-7 mg/L, respectively, even though the porosity of geotexitle filter was as high as 0.90. Peat was not able to provide efficient performance due to its poor BOD(5) and NH(4)(+)-N removals. This study measured the water quality variation at different components of the RBFs. The results of this study showed that the recirculation tank was the main facilitator of the denitrification process. In addition, this study found that RBFs could efficiently treat domestic wastewater for BOD(5) removal under the organic loading rates as high as 0.070 kg/m(2)/d.  相似文献   

15.
采用水解酸化与深井曝气为主体的组合工艺处理激素类制药废水,处理规模为3 000 m3/d。工程运行结果表明:当进水COD为8 000~10 000 mg/L、BOD5为4 800~6 000 mg/L、pH值为4~6、氨氮约为300 mg/L时,处理后出水COD≤500 mg/L,BOD5≤300 mg/L,出水水质达到《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

16.
A nitrifying membrane biofilm reactor (MBfR) was operated over 170 days, to assess the effect of ammonia loading rate under O2-excess conditions, and the effect of dissolved oxygen under O2-limiting conditions on nitrification efficiency. The MBfR was fed pure oxygen by diffusion through a non-porous membrane. Five different loading rates, ranging from 1.92 to 5.53 g N/m2 d, were tested, yielding specific nitrification rates (SNR) ranging from 1.54 to 2.60 g N/m2 d. SNR increased linearly with specific loading rate, up to the load of 3.5 g N/m2 d, which indicated that mass transfer was linearly related to the bulk ammonia concentration. Beyond that load, substrate diffusion limitation inhibited further increase of SNR. When operating the system under limited oxygen supply conditions, 100% oxygen utilization was achievable. Maintenance of higher oxygen supply allowed a slightly higher SNR due to the growth of nitrifiers at the outer side of the biofilm (away from the membrane surface). Nitrification batch tests confirmed that the fraction of nitrifiers in the solids detached from the surface of the biofilm (and washed out with the effluent), was twice as high during oxygen-excess conditions when compared to oxygen-limiting conditions.  相似文献   

17.
K.K. Chin  K.K. Wong 《Water research》1981,15(9):1087-1092
Effluent from the refining of crude palm oil was subjected to physical-chemical and biological treatment. An inclined corrugated parallel plates oil separator spaced at 25 mm was used with hydraulic loading rates of 0.2, 0.5 and 1 m3 m−2-h. 91% oil and grease removal could be achieved at 0.2 m3 m−2-h. Coagulation and flocculation carried out on batch samples after oil and grease separation revealed that with 100 mg l−1 alum addition BOD was reduced from 3500 to 450 mg l−1 and COD from 8600 to 750 mg l−1 after 30 min settling. Higher doses of alum and doses of polyelectrolyte, activated carbon and sodium hypochloride did not yield significant additional reductions in BOD and COD. Batch dissolved air flotation (DAF) removed 90% of the suspended solids with 2.7% solids in the thickened sludge at an A/S ratio of 0.014. This method yielded the similar effluent quality as the inclined corrugated plates oil and grease separator. Field data from a DAF plant compare closely with data achieved in this study. Activated sludge treatment on the effluent from the oil separator yielded a BOD of 46 mg l−1 with a loading rate of 0.3 g BOD (g MLVSS)−1-day. Total dissolved solids (TDS) remained high and removal through coagulation and chemical oxidation brought the COD level down to around 180 mg l−1. Biokinetic coefficients Y, kdK and K3 were found to be 0.85 g VSS (g BOD)−1, 0.016 day−1, 0.12 g BOD (g VSS)−1-day and 510 mg l−1 BOD respectively.  相似文献   

18.
This paper presents results of an investigation on the application of alum for improving the overall performance of wastewater treatment plants. These studies were conducted on a pilot scale of 7200 gal day−1. The pilot plant incorporated parallel systems for evaluating conventional and high-rate clarification. The conventional system included chemical addition, rapid mix, flocculation, sedimentation, and rapid sand filtration. The high-rate system differed in that the flocculated solids were introduced directly onto a dual-media filter with no intermediate sedimentation.Results of this study indicate that in both types of tertiary clarification treatment, greater than 95 per cent removal of the BOD of a nitrified secondary effluent, turbidity, and suspended solids were achieved with alum doses of 40–60 mg 1−1. Efficient phosphorus removals were also realized in the same systems by increasing the alum dose to about 150 mg 1−1. In addition to the removal of BOD and phosphorus, bacteria and heavy metals were removed.  相似文献   

19.
How to mitigate membrane fouling remains a critical challenge for widespread application of membrane bioreactors. Herein, an antifouling electrochemical membrane bioreactor (EMBR) was developed based on in-situ utilization of the generated electricity for fouling control. In this system, a maximum power density of 1.43 W/m3 and a current density of 18.49 A/m3 were obtained. The results demonstrate that the formed electric field reduced the deposition of sludge on membrane surface by enhancing the electrostatic repulsive force between them. The produced H2O2 at the cathode also contributed to the fouling mitigation by in-situ removing the membrane foulants. In addition, 93.7% chemical oxygen demand (COD) removal and 96.5% 4NH+-NNH4+-N removal in average as well as a low effluent turbidity of below 2 NTU were achieved, indicating a good wastewater treatment performance of the EMBR. This work provides a proof-of-concept study of an antifouling MBR with high wastewater treatment efficiency and electricity recovery, and implies that electrochemical control might provide another promising avenue to in-situ suppress the membrane fouling in MBRs.  相似文献   

20.
Sulfide can be removed from wastewater and recovered as elemental sulfur using an electrochemical process. Recently, we demonstrated this principle of product recovery on synthetic feeds. Here, we present a lab scale electrochemical reactor continuously removing sulfide from the effluent of an anaerobic treatment process operated on paper mill wastewater. The effluent contained 44 ± 7 mg of sulfide-S L−1. Sulfide was reduced to 8 ± 2 mg-S L−1, at a removal rate of 0.845 ± 0.133 kg-S m−3 of total anodic compartment (TAC) d−1. The removed sulfide was recovered (75 ± 4% recovery) as pure concentrated alkaline sulfide/polysulfide solution, from which solid elemental sulfur was obtained. The electrochemical sulfide removal was not affected by different soluble constituents or particulate materials present in the wastewater. However, over time sulfide removal decreased due to biological sulfur reduction using the organics present in the wastewater. Therefore, a periodic switching strategy between anode and cathode was developed. Biofilm formation was avoided as the pH of the cathode solution increased to inhibitory levels during cathodic operation, while still allowing full recovery of the sulfur as end product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号