首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters.Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC.The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.  相似文献   

2.
The presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and N-nitrosamines in water is of great concern due to their adverse effects on human health. In this work, the removal of N-nitrosodimethylamine (NDMA), total THM and five HAA precursors from secondary effluent by biological activated carbon (BAC) is investigated at full and pilot scale. In the pilot plant two filter media, sand and granular activated carbon, are tested. In addition, we evaluate the influence of ozonation prior to BAC filtration on its performance. Among the bulk of NDMA precursors, the fate of four pharmaceuticals containing a dimethylamino moiety in the chemical structure are individually investigated. Both NDMA formation potential and each of the studied pharmaceuticals are dramatically reduced by the BAC even in the absence of main ozonation prior to the filtration. The low removal of NDMA precursors at the sand filtration in comparison to the removal of NDMA precursors at the BAC suggests that adsorption may play an important role on the removal of NDMA precursors by BAC. Contrary, the precursors for THM and HAA formation are reduced in both sand filtration and BAC indicating that the precursors for the formation of these DBPs are to some extent biodegradable.  相似文献   

3.
Pilot studies investigated the fates of color, dissolved organic carbon (DOC), and biodegradable organic matter (BOM) by the tandem of ozone plus biofiltration for treating a source water having significant color (50 cu) and DOC (3.2 mg/l). Transferred ozone doses were from 1.0 to 1.8 g O3/g C. Rapid biofilters used sand, anthracite, or granular activated carbon as media with empty-bed contact time (EBCT) up to 9 min. The pilot studies demonstrated that ozonation plus biofiltration removed most color and substantial DOC, and increasing the transferred ozone dose enhanced the removals. For the highest ozone dose, removals were as high as 90% for color and 38% for DOC. While most of the color removal took place during ozonation, most DOC removal occurred in the biofilters, particularly when the ozone dose was high. Compared to sand and anthracite biofilters, the GAC biofilter gave the best performance for color and DOC removal, but some of this enhanced performance was caused by adsorption, since the GAC was virgin at the beginning of the pilot studies. Backwashing events had no noticeable impact of the performance of the biofilters. The Transient-State, Multiple-Species Biofilm Model (TSMSBM) was used to interpret the experimental results. Model simulations show that soluble microbial products, which comprised a significant part of the effluent BOM, offset the removal of original BOM, a factor that kept the removal of DOC relatively constant over the range of EBCTs of 3.5-9 min. Although improved biofilm retention, represented by a small detachment rate, allowed more total biofilm accumulation and greater removal of original BOM, it also caused more release of soluble microbial products and the build up of inert biomass in the biofilm. Backwashing had little impact on biofilter performance, because it did not remove more than 25% of the biofilm under any condition simulated.  相似文献   

4.
T ests OF FOUR types of filter media are presented, which show that granular activated carbon performs marginally less well than anthracite/sand or anthracite/sand/garnet in the removal of algae, particulate organic carbon, iron and turbidity. The lengths of run which are achieved by the two granular activated carbon filters are also shorter than those of the other two media. A three-layer filter is better than the anthracite/sand filter for particulate organic carbon, iron and turbidity removal, and the filtrate contains lower mean concentrations of algae.  相似文献   

5.
以三氯化铁和聚合氯化铝(PAC)作为絮凝剂,采用石英砂、沸石、锰砂和颗粒活性炭滤柱进行了单独及串联微絮凝过滤预处理低浊度海水的试验研究。结果表明,单独微絮凝过滤对浊度有较好的去除效果,其中锰砂的相对较差;颗粒活性炭滤柱对有机物的去除率较高,其余3种滤柱只能去除小部分的有机物;4种滤柱单独过滤的除盐能力均很弱。而串联过滤工艺明显提高了对有机物的去除率和除盐能力,几乎全部的浊度和绝大部分的有机物均能被有效去除。当采用三氯化铁作絮凝剂时,石英砂滤柱与颗粒活性炭滤柱串联的除盐效果最显著;而采用PAC作絮凝剂时,锰砂滤柱与颗粒活性炭滤柱串联的除盐能力最佳。  相似文献   

6.
Lin CK  Tsai TY  Liu JC  Chen MC 《Water research》2001,35(3):699-704
The characteristics of degradation/conversion of bio-refractory and the growth of a biofilm are investigated in laboratory-scale pre-ozonation and lifted moving-bed biological activated carbon (BAC) advanced treatment processes treating phenol, benzoic acid, aminobenzoic acid and petrochemical industry wastewater which contains acrylonitrile butadiene styrene (ABS). The optimal reaction time and ozone dosage of pre-ozonation for bio-refractory conversion were determined to be 30 min and 100-200 mg O3/hr, respectively. After pre-ozonation of 30 min treatment, BOD5/COD ratio of influent and effluent increased apparently from 20 to 35%, approximately. However, the change of pH in pre-ozonation was inconspicuous. The optimal flow rate of influent and air were controlled at 1.6 l/h and 120-150 nl/min in lifted moving-bed BAC advanced treatment reactor. A COD removal efficiency of 85-95% and 70-90% may be maintained by using an organic loading of 3.2-6.3 kg COD/m3 day and 0.6-1.6 kg-COD/m3 day with an HRT of 6.0 h as secondary and advanced treatment system, respectively. The time required for the BAC bed is be regenerated by a thermal regeneration is prolonged 4-5 times more than that of GAC system. It can be estimated that the enhanced COD removal capability of the biofilm was not only due to the increase in the COD removal capability of acclimated bacteria, but also due to species succession of bacteria in bio-film ecosystem.  相似文献   

7.
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed.PPCPs were found to be present at high loads reaching 10 kg day−1 in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3 kg of PPCPs day−1) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.  相似文献   

8.
This study investigates the fate of trace organic chemicals (TrOCs) in three full-scale reclamation plants using ozonation followed by biological activated carbon (BAC) filtration to treat wastewater treatment plant effluents. Chemical analysis was used to quantify a wide range of TrOCs and combined with bioanalytical tools to assess non-specific toxicity (Microtox assay) and estrogenicity (E-SCREEN assay). Limited dissolved organic carbon (DOC) removal (<10%) was observed in the ozonation stages showing that oxidation leads to the formation of transformation products rather than mineralization. The quantified TrOCs were removed to a degree highly dependent on the compounds’ structures and the specific ozone dose (mgO3 mgDOC−1). Non-specific toxicity was reduced by 31-39%, demonstrating that the mixture of remaining parent compounds and their transformation products as well as newly formed oxidation by-products had an overall lower toxic potential than the mixture of parent compounds. Estrogenicity was reduced by more than 87% indicating that the transformation products of the estrogenic chemicals lost their specific toxicity potential. The subsequent BAC filtration removed between 20 and 50% of the DOC depending on the plant configuration, likely due to biodegradation of organic matter. The filtration was also able to reduce the concentrations of most of the remaining TrOCs by up to 99%, and reduce non-specific toxicity by 33-54%. Overall, the combination of ozonation and BAC filtration can achieve removals of 50% for DOC and more than 90% for a wide range of TrOCs as well as a reduction of 70% of non-specific toxicity and more than 95% of estrogenicity. This process combination is therefore suggested as an effective barrier to reduce the discharge of TrOCs into the environment or their presence in water recycling schemes.  相似文献   

9.
Haberkamp J  Ruhl AS  Ernst M  Jekel M 《Water research》2007,41(17):3794-3802
Membrane fouling by macromolecular dissolved organic compounds is still a fundamental drawback in low-pressure membrane filtration of secondary effluent. In this study, pre-treatment of secondary effluent by coagulation and/or adsorption was investigated in terms of removal of different dissolved organic carbon (DOC) fractions, especially macromolecular substances. DOC fractionation has been characterised by size exclusion chromatography. Adsorption tests using four commercially available activated carbons yielded a removal of small as well as larger organic compounds, revealing differences in the affinity towards macromolecules depending on the type of applied activated carbon. By contrast, coagulation removed predominantly larger molecules, i.e., biopolymers and humic substances. In terms of DOC reduction, the coagulant ferric chloride was superior to aluminium chloride. A combination of coagulation and adsorption resulted in the addition of individual removal efficiencies, suggesting that different fractions of organic compounds were involved in each of the processes. After removal of macromolecular organic compounds either by coagulation or by adsorption, a significant reduction of membrane fouling was observed in tests using two different types of ultrafiltration flat-sheet membranes in 20-h cross-flow filtration tests.  相似文献   

10.
Biological removal of the ozonation by-product, bromate, was demonstrated in biologically active carbon (BAC) filters. For example, with a 20-min EBCT, pH 7.5, and influent dissolved oxygen (DO) and nitrate concentrations 2.1 and 5.1 mg/l, respectively, 40% bromate removal was obtained with a 20 microg/l influent bromate concentration. In this study, DO, nitrate and sulfate concentrations, pH, and type of source water were evaluated for their effect on bromate removal in a BAC filter. Bromate removal decreased as the influent concentrations of DO and nitrate increased, but bromate removal was observed in the presence of measurable effluent concentrations of DO and nitrate. In contrast, bromate removal was not sensitive to the influent sulfate concentration, with only a slight reduction in bromate removal as the influent sulfate concentration was increased from 11.1 to 102.7 mg/l. Bromate reduction was better at lower pH values (6.8 and 7.2) than at higher pH values (7.5 and 8.2), suggesting that it may be possible to reduce bromate formation during ozonation and increase biological bromate reduction through pH control. Biological bromate removal in Lake Michigan water was very poor as compared to that in tapwater from a groundwater source. Bromate removal improved when sufficient organic electron donor was added to remove the nitrate and DO present in the Lake Michigan water, indicating that the poor biodegradability of the natural organic matter may have been limiting bromate removal in that water. Biological bromate removal was demonstrated to be a sustainable process under a variety of water quality conditions, and bromate removal can be improved by controlling key water quality parameters.  相似文献   

11.
Flow rate, electron donor addition, and biomass control were evaluated in order to optimize perchlorate (ClO4) removal from drinking water using biologically active carbon (BAC) filtration. Influent dissolved oxygen (DO) was lowered from ambient conditions to approximately 2.5 mg/L for all experiments using a nitrogen sparge. When influent nitrate concentration was 0-2.0 mg/L, 1.6-2.8 mg/L as carbon of acetate or ethanol was required to achieve and sustain the complete removal of 50 μg/L perchlorate in a BAC filter. Most or all of the exogenous acetate and ethanol was removed during biofiltration. When a 72-h electron donor feed failure was simulated, a maximum perchlorate breakthrough of 18 μg/L was observed and, once electron donor was reapplied, 9 days were required to reestablish complete perchlorate removal. During a 24-h electron donor feed failure simulation, the maximum effluent perchlorate concentration detected was 6.7 μg/L. Within 24 h of reactivating the electron donor, the filter regained its capacity to consistently remove 50 μg/L perchlorate to below detection. Although biomass growth diminished the filter's ability to consistently remove perchlorate, a cleaning procedure immediately restored stable, complete perchlorate removal. This cleaning procedure was required approximately every 50 days (4800 bed volumes) when influent DO concentration was 2.5 mg/L. Empty-bed contact time (EBCT) experiments showed that 80% perchlorate removal was achieved using a 5-min EBCT, and complete perchlorate removal was observed for an EBCT of 9 min. It was also demonstrated that BAC filtration consistently removed perchlorate to below detection for influent perchlorate concentrations ranging from 10 to 300 μg/L, influent sulfate concentrations between 0 and 220 mg/L, influent pH values of 6.5-9.0, and operating temperatures of 5-22°C.  相似文献   

12.
This study aims at evaluating occurrence and treatment efficiency of five estrogenic hormones and ten beta blockers in wastewater treatment plants (WWTP). The use of consistent sampling procedures, analytical techniques and data processing enabled to achieve an accurate comparison of the performances of the different treatment processes. First, the occurrence of molecules was evaluated in fourteen rural and urban WWTP located in France. Free and total estrogens were analyzed showing that more than 84% of estrogens in the dissolved phase of influent samples are in the free form. In effluent samples, comparable mean values but higher variation are underlined (RSD from 13 to 54% depending on the estrogen, compared to 11-21% for influents). Most of the target molecules are quantified in 30 influent and 31 effluent samples. Similar occurrence frequencies are obtained for influents from rural (6 WWTP) and urban areas (8 WWTP), except for betaxolol which is only quantified in urban wastewaters. Removal efficiencies of 8 biological treatments were studied: suspended growth biomass (activated sludge) and attached growth systems (biofilter, rotating biological contactor, reed-bed filter, trickling filter). Biological treatments are efficient to remove estrogens from the dissolved phase, with removal rate around 90%. For beta blockers, acebutolol and nadolol are efficiently removed (mean removal rate of 80%), whereas sotalol and propranolol are hardly impacted by biological treatments (removal rate below 20%). Finally, 9 tertiary treatment processes were evaluated. Ozonation, reverse osmosis and activated carbon filtration prove a high removal efficiency for beta blockers (above 80%). On the contrary, high speed chemical settler, sand filtration, silex filtration, microfiltration and UV present generally removal rates below 30% for all beta blockers. The polishing pond studied presents variable removal performances depending on the molecules (up to 75% for propranolol). The role of the hydraulic retention time on the removal efficiencies is confirmed.  相似文献   

13.
BAC滤池对浊度和颗粒数的控制研究   总被引:1,自引:0,他引:1  
传统的贾第鞭毛虫和隐孢子虫(简称“两虫”)检测方法存在诸多不足,为此选用浊度和颗粒数作为“两虫”的替代指标,以对浊度和颗粒物的去除率来衡量生物活性炭(BAC)滤池对“两虫”的控制效果。试验结果表明:采用颗粒数表征滤后水水质比采用浊度更适宜。过滤初期颗粒数从峰值降到50个/mL以下所需的时间比浊度降到0.1NTU所需的时间多1h左右。正常过滤期间BAC滤池进水浊度一般在0.1NTU以下,经过BAC滤池处理后,浊度得到进一步降低,平均去除率为52.7%。炭层对浊度的去除率为56.4%,其出水浊度基本上都低于0.05NTU,而砂层对浊度不但没有去除能力,反而使出水浊度平均上升了约3.7%。炭层对颗粒物的平均去除率为33.3%,砂层对颗粒物的平均去除率为8.5%。  相似文献   

14.
DBPs removal in GAC filter-adsorber   总被引:4,自引:0,他引:4  
Kim J  Kang B 《Water research》2008,42(1-2):145-152
A rapid sand filter and granular activated carbon filter-adsorber (GAC FA) were compared in terms of dissolved organic carbon (DOC) and disinfection by-products (DBPs) removal. A water treatment plant (WTP) that had a high ammonia concentration and DOC in raw water, which, in turn, led to a high concentration of DBPs because of a high dose of pre-chlorination, was investigated. To remove DBPs and DOC simultaneously, a conventional rapid sand filter had been retrofitted to a GAC FA at the Buyeo WTP in Korea. The overall removal efficiency of DBPs and DOC was higher in the GAC FA than in the sand filter, as expected. Breakthrough of trihalomethanes (THMs) was noticed after 3 months of GAC FA operation, and then removal of THMs was minimal (<10%). On the other hand, the removal efficiency of five haloacetic acids (HAA(5)) in the GAC FA was better than that of THMs, though adsorption of HAA(5) decreased rapidly after 3.5 months of GAC FA operation. And then, gradual improvement (>90%) in HAA(5) removal efficiency was again observed, which could be attributed to biodegradation. At the early stage of GAC FA operation, HAA(5) removal was largely due to physical adsorption, but later on biodegradation appeared to prevail. Biodegradation of HAA(5) was significantly influenced by water temperature. Similar turbidity removal was noticed in both filters, while better manganese removal was confirmed in the sand filter rather than in the GAC FA.  相似文献   

15.
DOC removal by multi-stage ozonation-biological treatment   总被引:14,自引:0,他引:14  
Multi-stage ozonation-biological treatment process for dissolved organic carbon (DOC) removal was evaluated to apply for drinking water treatment. Waters with different types of DOC were used, i.e. a reservoir water for drinking water supply, a secondary effluent from a municipal wastewater treatment plant and a solution of humic substances extracted from leaf mold. The multi-stage ozonation-biological treatment process was compared with conventional single-stage ozonation-biological treatment process. Amount of DOC removed in biological treatment was defined as amount of biodegradable dissolved organic carbon (BDOC) in influent of biological treatment. DOC removal in the multi-stage ozonation-biological treatment was higher than that in the conventional single-stage ozonation-biological treatment with the same total ozonation time for the reservoir water and humic substances solution. Moreover, three- or four-stage ozonation for 5 min followed by biological treatment (total ozonation time 15 or 20 min) showed higher removal of DOC than the single-stage ozonation (60 min) and biological treatment. The higher DOC removal in the multi-stage treatment was due to the production of BDOC by ozonation. The long-term ozonation was not effective to produce BDOC because most of ozone was utilized to oxidize BDOC produced in the early stage of ozonation. In the multi-stage treatment, ozonation was effective to decompose refractory DOC and to produce BDOC because BDOC was removed by biological treatment. However, multi-stage ozonation-biological treatment was not effective for the secondary effluent. The reason seems to be high concentration of ozone scavengers in that water and low reactivity of DOC for ozone.  相似文献   

16.
太湖原水净化过程中有机物分子量分布特性研究   总被引:2,自引:0,他引:2  
采用超滤法考察了太湖原水、各净水单元工艺出水中有机物分子量分布的变化特性.结果表明,太湖原水经预臭氧+曝气生物预处理工艺、常规处理工艺和臭氧-生物活性炭+超滤深度处理工艺后,总DOC去除率可以达到71.6%;臭氧预氧化+曝气生物滤池预处理工艺出水DOC变化不大,但分子量的分布变化较明显;常规的混凝沉淀工艺对分子量为0....  相似文献   

17.
按水中溶解性有机碳(DOC)的可生物降解性及其在活性炭上的可吸附性将其分为四类,考察了经生物活性炭滤池处理后水中四类有机碳的变化规律,并结合对有机碳分子质量的测定考察了生物活性炭滤池对不同分子质量区间有机碳的去除效果。结果表明。滤池在运行初期去除的DOC主要为可吸附性DOC;在其连续运行6个月后,能够有效去除的DOC则为可生物降解且可吸附性DOC;可被滤池去除的DOC主要分布在分子质量为(3~10)、(1~3)及〈0.5ku的范围内。生物活性炭的生物再生过程只能保证滤池对可生物降解且可吸附性DOC的持续去除能力。  相似文献   

18.
改性砂高速过滤技术用于污水再生回用的研究   总被引:1,自引:0,他引:1  
采用SJ材料作为改性剂对石英砂滤料进行改性,经测定,其表面的物理化学性能优于石英砂.将改性砂应用于煤砂双层滤料高速过滤工艺,并处理某污水厂的二级出水,其出水的平均浊度、COD、UV254、PO43--P分别为1.23 NTU、27.4 mg/L、0.133 5 cm-1、0.42 mg/L,对各项指标的去除率均高于石英砂滤料,且完全符合GB/T 18920-2002标准中的城市杂用水水质要求.研究发现,高速过滤工艺应该以自然条件下的最大滤速为起始滤速;污染物积累和滤层负压导致水中溶解气体的析出会减小有效过水断面面积,这是引起滤速衰减的主要原因.  相似文献   

19.
A UV-deconvolution method was modified, and applied to estimation of dissolved organic carbon (DOC) along a municipal wastewater treatment plant (WWTP) in Catalonia, Spain. One grab sample was taken every 2h at four sampling points, for 1 week (336 samples), in order to characterise day/night and weekday/weekend DOC regimes along the plant. Samples were centrifuged before DOC determination or estimation. Four components were selected for describing wastewater composition and spectra. Reference spectra for these components were taken from the literature and proved to correctly explain the sample spectra. A two-step deconvolution method was developed, which avoided negative nitrate coefficients while keeping deconvolution error low. The calibration file for DOC estimation was determined by analysing DOC and acquiring UV spectra from 48 samples. DOC values were correlated to UV spectra by multiple linear regression. Determination coefficient and standard error were comparable to the values found in the literature. In raw or diluted samples with an absorbance between 2.0 and 2.5, DOC was probably underestimated by the method. This points to some nonlinearity for absorbances above 2.0, rather than the 2.5 limit suggested by the original method. DOC calculation through UV deconvolution allowed for the estimation of DOC regime along the WWTP. Time bands for higher and lower DOC concentrations were determined and characterised at each sampling point, for weekdays and the weekend. Except for the plant effluent, clear time bands were found. In effluent, DOC was always low, and very small oscillations were detected, due to DOC removal and intense mixing in the biological process. DOC profiles at each point are discussed in this paper. The modified deconvolution method has proved to be an accurate and efficient technique for estimating DOC of a large number of raw and diluted samples.  相似文献   

20.
Xing Zheng  Martin Jekel 《Water research》2010,44(10):3203-3213
Natural biofiltration processes have been verified as effective pre-treatment choice improving the performance of low-pressure membranes (MF/UF) in wastewater reclamation. In the present work, pilot-scale slow sand filtration (SSF) was used to simulate bank filtration at high filtration rates (from 0.25 m/h to 0.5 m/h) to filter secondary effluent prior to UF. The results showed that SSF improved the performance of UF to a large extent. Related to previous work biopolymers are considered as major dissolved organic foulants in treated wastewater. The removal of these organic foulants in slow sand filters and factors affecting the performance of SSF were investigated. It was observed that the removal of biopolymers took place mainly at the upper sand layer and was related to biological degradation. Tests on the degradability of biopolymers verified that they are biodegradable. Sixteen months monitoring of biopolymer concentration in the secondary effluent indicated that it varied seasonally. In winter season the concentration was much higher than during the summer months. Higher temperature and lower biopolymer concentration led to more effective foulants removal and more sustainable operation of SSF. During the whole experimental period, the performance of SSF was always better at filtration rate of 0.25 m/h than at 0.5 m/h. Under the present experimental conditions, SSF exhibited stable and effective biopolymer removal at temperatures higher than 15 °C, at biopolymer concentrations lower than 0.5 mg C/L and with sufficient oxygen available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号