共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspended solids in Missouri reservoirs in relation to catchment features and internal processes 总被引:2,自引:0,他引:2
Mean total suspended solids (TSS), in 135 Missouri reservoirs range from 1.2 to 47 mg/l. The volatile (VSS) and non-volatile (NVSS) fractions range from 0.6 to 9.6 mg/l and 0.5 to 37 mg/l, respectively. %NVSS is the larger fraction and declines through summer as %VSS increases. Suspended solids (particularly VSS) correlate with metrics of lake trophic state and are positively related with the proportion of cropland (%C, r = 0.69-0.74) in their catchments, negatively related with forest cover (r = -0.54 to -0.56), and weakly related with grassland (r < 0.31). Regressions including %C with dam height (representing morphometry) and flushing rate (representing hydrology), explain approximately 70% of cross-system variation in TSS and 67% in VSS. Dam height and %C explain 57% of variation in NVSS. Residual analysis shows statewide models under-predict suspended solids in urban reservoirs. Effects of catchment features on summer TSS largely reflect internal plankton growth mediated by influent nutrients (affecting VSS) over direct sediment input (affecting NVSS). 相似文献
2.
Export of dissolved organic matter in relation to land use along a European climatic gradient 总被引:1,自引:0,他引:1
Tuija Mattsson Pirkko Kortelainen Dylan Evans Antti Räike 《The Science of the total environment》2009,407(6):1967-1171
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads. 相似文献
3.
Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-Digester system 总被引:3,自引:0,他引:3
The treatment of sewage at 15 degrees C was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-Digester system. The latter consists of a UASB reactor complemented with a digester for mutual sewage treatment and sludge stabilisation. The UASB reactor was operated at a hydraulic retention time of 6h and a controlled temperature of 15 degrees C, the average sewage temperature during wintertime of some Middle East countries. The digester was operated at 35 degrees C. The UASB-Digester system provided significantly (significance level 5%) higher COD removal efficiencies than the one-stage UASB reactor. The achieved removal efficiencies in the UASB-Digester system and the one-stage UASB reactor for total, suspended, colloidal and dissolved COD were 66%, 87%, 44% and 30%, and 44%, 73%, 3% and 5% for both systems, respectively. The stability values of the wasted sludge from the one-stage UASB reactor and the UASB-Digester system were, respectively, 0.47 and 0.36g CH(4)-COD/g COD. Therefore, the anaerobic sewage treatment at low temperature in a UASB-Digester system is promising. 相似文献
4.
Jennifer A. Graydon Craig A. Emmerton Erin N. Kelly 《The Science of the total environment》2009,407(8):2980-2988
Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17 ± 5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213 ± 0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean. 相似文献
5.
以山东铝业公司软化水站为例,介绍了当地城市给水处理厂引入黄河水后,软化水站出现的问题、原因以及采取活性炭过滤措施的效果,说明利用活性炭进一步处理该类自来水是解决此类问题的有效方法。最后提出了几点建议。 相似文献
6.
A shake-flask approach has been employed to determine the n-octanol-water partitioning of chemical constituents in various river waters and in treated sewage effluent. The bulk inorganic composition of the water samples (conductivity, pH and the concentrations of major solutes: Ca, K, Mg, Na) was unaffected by the presence of solvent. Boron, however, exhibited increasing partition with decreasing sample pH, because its dominant form in freshwaters, B(OH)3, is neutral, covalent and acidic. Constituents having significant association with dissolved organic matter (DOM), including components of DOM itself (C, S) and trace metals that form complexes with organic ligands (Al, Cu, Fe, Pb, Zn), exhibited measurable partition into the solvent in most cases, with conditional partition coefficients, Dow, in the region 0.03-2.5. Significant differences in the partitioning among these constituents and among the environments studied did not appear to be related to bulk sample characteristics or the degree of association of the constituent with DOM. These observations suggest that partition is sensitive to the nature of the organic matter (C, S) and the availability of specific binding ligands (trace metals). Thus, although Dow is critical for defining the biogeochemical behaviour and potential impacts of chemical constituents in the environment, it appears to be a difficult parameter to model or predict. 相似文献
7.
Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer 总被引:4,自引:0,他引:4
Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer. 相似文献
8.
Climate, flow rate and land use are all known drivers of water quality in river systems, but determining the relative influences of these factors remains a significant challenge for aquatic science and management. Long-term data from the Schuylkill River at Philadelphia is assessed here in an attempt to ascertain the separate and combined influence of these major drivers on water quality in a developed watershed. Water quality measures including nutrients, conservative solutes and bacteria all elicited distinct seasonal patterns driven primarily by river discharge. Mass transport rates of sodium and chloride have increased with time, and were elevated in winter, presumably as a function of road salt deposition. A steady increase in developed land area in the watershed has occurred in recent decades, which allowed the use of time as a surrogate parameter for regional development in the construction of multiple factor linear models predicting the relative influences of precipitation, river discharge and developed land area on river water quality. Linear models predicting annually averaged water quality measures showed the effects of precipitation, discharge and developed land area to be of nearly equal importance in regulating levels of conductivity, alkalinity, sodium, and chloride in the river. Models predicting water quality variables for discrete samples demonstrated that river flow was the major determinant of daily variability in alkalinity, conductivity, hardness and calcium levels, while still resolving the highly significant influence of watershed development on water quality. Increases in solute transport in the Schuylkill River in recent decades appear to be the direct result of modern suburban development in the watershed. 相似文献
9.
Turbidity is an important water quality variable, through its relation to light suppression, BOD impact, sediment-associated contaminant transport, and suspended sediment effects on organisms and habitats. Yet few published field investigations of wet-weather turbidity dynamics, through several individual and sequenced rainstorms in extremely urbanised headwater basins, have emerged. This paper aims to address this gap through a turbidity analysis of multiple storm events in spring 2001 in an urban headwater basin (57 km2) of the River Tame, central England, the most urbanised basin for its size in the UK ( approximately 42%). Data were collected at 15-min frequency at automated monitoring stations for rainfall, streamflow and six water quality variables (turbidity, EC, temperature, DO, pH, ammonia). Disturbance experiments also allowed estimates of bed sediment storage to be obtained. Six important and unusual features of the storm event turbidity response were apparent: (1) sluggish early turbidity response, followed by a turbidity 'rush'; (2) quasi-coincident flow and turbidity peaks; (3) anti-clockwise hysteresis in the discharge-turbidity relationship on all but one event, resulting from Falling-LImb Turbidity Extensions (FLITEs); (4) increases in peak turbidity levels through storm sequences; (5) initial micro-pulses (IMP) in turbidity; and (6) secondary turbidity peaks (STP) or 'turbidity shoulders' (TS). These features provided very little evidence of a true 'first-flush' effect: instead, substantial suspended solids transport continued right through the flow recessions, and little storm-event sediment exhaustion was evident. A new, dimensionless, hysteresis index, HI(mid), is developed to quantify the magnitude and direction of hysteresis in a simple, clear, direct and intuitive manner. This allowed the degree of departure from the classic 'first-flush', clockwise hysteresis models to be assessed. Of the 15 turbidity events considered, 10 coincided with ammonia spikes of up to 6.25 mg l(-1) at Water Orton (the downstream station): this suggests that spills from combined sewer overflows (CSO) or waste water treatment works (WwTWs) are significant in the throughput of turbid waters here. Substantial ammonia peaks related most strongly to total storm rainfall receipt, of four rainfall variables considered, and significant ammonia peaks were generated even from low-magnitude storms (rainfall totals <4 mm), indicating that spills are a frequent occurrence. Local bed sediment stores appear to be limited, suggesting that other distal sediment sources, such as road networks and old mineworkings are possibly more important. Biofilms may also play a part in delaying sediment release until late in the hydrograph, and in suppressing late spring turbidity levels. Existing first-flush models appear to be an oversimplification here. Such urban headwater basin responses can provide useful insights into the generation of contaminant waves, and offer vital early-warning systems for pollution events propagating downstream. 相似文献
10.
Batch adsorption experiments using powdered activated carbon (PAC) to remove trace synthetic organic chemicals (SOCs) from water containing natural organic matter (NOM) were conducted. The percentage of SOC removed at any contact time and at any PAC dose was observed to be independent of the initial SOC concentration. Equations derived from the ideal adsorbed solution theory and the pore surface diffusion model validated this observation. For the strongly adsorbing SOCs (simazine and simetryn), the percentage of SOC removed was independent only at low initial SOC concentrations. The NOM fraction competing with the weakly adsorbing SOC (asulam) constituted a larger percentage of the total NOM than that competing with the strongly adsorbing SOCs. Although the adsorptive capacities of the SOCs were greatly reduced in water containing NOM compared with those in pure water, the change in the pore diffusion coefficient was insignificant. Therefore, NOM competed with the SOCs for adsorption sites, reducing the adsorptive capacity, but the amount of NOM loading was not so severe that it blocked or filled the pores, hindering the internal diffusion of the SOCs. 相似文献
11.
Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation. 相似文献
12.
The relative magnitudes of, and factors controlling, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in the soil of a re-connected temperate floodplain divided into four different land management zones (grazing grassland, hay meadow, fritillary meadow and a buffer zone). Soil samples were collected from each zone to measure their respective potentials for nitrate attenuation using 15N both at the surface and at depth in the soil column and additional samples were collected to measure the lability of the organic carbon. Denitrification capacity ranged between 0.4 and 4.2 (μmol N g−1 dry soil d−1) across the floodplain topsoil and DNRA capacity was an order of magnitude lower (0.01-0.71 μmol N g−1 d−1). Land management practice had a significant effect on denitrification but no significant effects were apparent for DNRA. In this nitrogen-rich landscape, spatial heterogeneity in denitrification was explained by differences in lability and the magnitude of organic carbon associated with different management practices (mowing and grazing). The lability of organic carbon was significantly higher in grazing grassland in comparison to other ungrazed areas of the floodplain, and consequently denitrification capacity was also highest in this area. Our results indicate that bacteria capable of DNRA do survive in frequently flooded riparian zones, and to a limited extent, compete with denitrification for nitrate, acting to retain and recycle nitrogen in the floodplain. Exponential declines in both denitrification and DNRA capacity with depth in the floodplain soils of a hay meadow and buffer zone were controlled primarily by the organic carbon content of the soils. Furthermore, grazing could be employed in re-connected, temperate floodplains to enhance the potential for nitrate removal from floodwaters via denitrification. 相似文献
13.
Nathaniel B. Weston James T. Hollibaugh 《The Science of the total environment》2009,407(10):3347-3356
We used more than thirty years of water quality monitoring data collected by the United States Geological Survey at several stations in the Altamaha River and its tributaries to examine the relationship between population density, agricultural land use, and nutrient export from the watershed. Population densities in the Altamaha River watershed increased during the study period, most notably in the upper watershed near metropolitan Atlanta, while agricultural land use declined throughout the watershed. NOx, TN and P in rivers were related to human population densities, while OC and NH4+ concentrations in rivers were apparently related to agricultural land use. A general pattern of increasing NOx and TN and decreasing NH4+, P and OC over time throughout the watershed reflected changing population and land use. The overall average load from the Altamaha River to the coastal zone during the study period was 1.1, 5.6, 16.9, 0.9 and 262 kmol km− 2 yr− 1, delivering 40, 197, 596, 30, and 9213 · 106 mol yr− 1 of NH4+, NOx, TN, P and OC, respectively, to the coastal zone. The nutrient export patterns suggest that N and P loading to rivers in the Altamaha River watershed was greatest in the upper watershed where high population densities were found, and in-stream processing, dilution, and only moderate inputs during transit through the lower watershed resulted in relatively low export from the watershed to coastal waters. 相似文献
14.
Wilkes G Edge TA Gannon VP Jokinen C Lyautey E Neumann NF Ruecker N Scott A Sunohara M Topp E Lapen DR 《Water research》2011,45(18):5807-5825
Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼27 mm (62 percentile). During higher water temperatures (>∼14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region. 相似文献
15.
Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China 总被引:3,自引:0,他引:3
The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH3-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. 相似文献
16.
Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes 总被引:2,自引:0,他引:2
Takagi S Adachi F Miyano K Koizumi Y Tanaka H Watanabe I Tanabe S Kannan K 《Water research》2011,45(13):3925-3932
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) have been recognized as global environmental pollutants. Although PFOS and PFOA have been detected in tap water from Japan and several other countries, very few studies have examined the fate, especially removal, of perfluorinated compounds (PFCs) in drinking water treatment processes. In this study, we analyzed PFOS and PFOA at every stages of drinking water treatment processes in several water purification plants that employ advanced water treatment technologies. PFOS and PFOA concentrations did not vary considerably in raw water, sand filtered water, settled water, and ozonated water. Sand filtration and ozonation did not have an effect on the removal of PFOS and PFOA in drinking water. PFOS and PFOA were removed effectively by activated carbon that had been used for less than one year. However, activated carbon that had been used for a longer period of time (>1 year) was not effective in removing PFOS and PFOA from water. Variations in the removal ratios of PFOS and PFOA by activated carbon were found between summer and winter months. 相似文献
17.
J.J. Rothwell K.G. Taylor M.G. Evans T.E.H. Allott 《The Science of the total environment》2009,407(4):1405-9557
Organic matter can play an important role in the mobility and fate of As in the environment, but there is a lack of data on As biogeochemistry in ombrotrophic peatlands. The aim of this study was to investigate As retention and release in atmospherically contaminated ombrotrophic peat soils in the Peak District National Park (UK). Solid phase As concentrations in the peat soils exceed 25 mg kg− 1. Solid phase As and Fe concentrations are closely correlated at sites where the peat is subjected to drying and oxic conditions. In a wetter zone of the bog, solid phase As and Fe distributions are decoupled, suggesting that As retention in these systems is not solely controlled by the presence of Fe oxides. Comparison of solid phase As and Pb distributions reveals that As has been subjected to post-depositional mobility in areas of water table fluctuation. Conversely, at permanently waterlogged locations As is immobile. Detailed stream water sampling reveals that As is released from the organic-rich uplands soils into the fluvial system. Dissolved As concentrations are highly variable, with values ranging from 0.20 to 7.28 μg l− 1. Stream water As concentrations are elevated during late summer stormflow periods when there has been re-wetting of the peat after significant water table draw-down. Dissolved As is strongly correlated to dissolved organic carbon under stormflow and baseflow. The results of this study suggest that organic matter plays an important role in As dynamics in ombrotrophic peatlands, but further work is needed to identify the exact As binding and release mechanisms. Drying and re-wetting of ombrotrophic peat soils and associated changes in redox status has the potential to lead to increased As mobility. Further work is needed to provide information on how predicted climate change will influence As cycling at sites containing a legacy of atmospheric contamination. 相似文献
18.
This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (δ13CPOC) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. δ13CPOC showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C4 plants with enhanced soil erosion.The specific flux of the total organic carbon (2.30 t km− 2 year− 1) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle. 相似文献
19.
Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures 总被引:11,自引:0,他引:11
Temperature changes can influence biological processes considerably. To investigate the effect of temperature changes on the conversion processes and the stability of aerobic granular sludge, an aerobic granular sludge sequencing batch reactor (GSBR) was exposed to short-term and long-term temperature changes. Start-up at 8 degrees C resulted in irregular granules that aggregated as soon as aeration was stopped, which caused severe biomass washout and instable operation. The presence of COD during the aerobic phase is considered to be the major reason for this granule instability. Start-up at 20 degrees C and lowering the temperature to 15 degrees C and 8 degrees C did not have any effect on granule stability and biomass could be easily retained in the system. The temperature dependency of nitrification was lower for aerobic granules than usually found for activated sludge. Due to decreased activity in the outer layers of granules at lower temperatures, the oxygen penetration depth could increase, which resulted in a larger aerobic biomass volume, compensating the decreased activity of individual organisms. Consequently the denitrifying capacity of the granules decreased at reduced temperatures, resulting in an overall poorer nitrogen removal capacity. The overall conclusion that can be drawn from the experiments at low temperatures is that start-up in practice should take place preferentially during warm summer periods, while decreased temperatures during winter periods should not be a problem for granule stability and COD and phosphate removal in a granular sludge system. Nitrogen removal efficiencies should be optimized by changes in reactor operation or cycle time during this season. 相似文献