首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the system was monitored. The installation consisted of a synthetic domestic wastewater-feeding system and a pilot-scale constructed wetland for wastewater treatment, which also included coupled devices necessary to function as an MFC. The wetland worked under continuous operation for 180 d, treating three types of synthetic wastewater with increasing organic loading rates: 13.9 g COD m−2 d−1, 31.1 g COD m−2 d−1, and 61.1 g COD m−2 d−1. The COD removal efficiencies and the cell voltage generation were continuously monitored. The wetland worked simultaneously as an MFC generating electric power. Under low organic loading rates, the wastewater organic matter was completely oxidised in the lower anaerobic compartment, and there were slight aerobic conditions in the upper cathodic compartment, thus causing an electrical current. Under high organic loading rates, the organic matter could not be completely oxidised in the anodic compartment and flowed to the cathodic one, which entered into anaerobic conditions and caused the MFC to stop working. The system developed in this work offered similar cell voltage, power density, and current density values compared with the ones obtained in previous studies using photosynthetic MFCs, sediment-type MFCs, and plant-type MFCs. The light/darkness changes caused voltage fluctuations due to the photosynthetic activity of the macrophytes used (Phragmites australis), which affected the conditions in the cathodic compartment.  相似文献   

2.
Landfill leachate with a low BOD/COD ratio was electrochemically oxidized by means of a boron-doped diamond anode. In addition to organic matter removal, this study addressed the issue of formation of both chlorinated organic compounds and nitrate ions as a result of organic matter and ammonia and/or organic nitrogen electro-oxidation in the presence of chloride ions. A factorial design methodology was implemented to evaluate the statistically important operating variables: treatment time (1-4 h), pH (5-8), current intensity (6.3-8.4 A) and addition of chloride (2500-4500 mg L−1). The process was evaluated on COD, total nitrogen (TN) and colour removal, as well as on the formation of nitrate, nitrite and chlorinated organics. Of the four variables studied, treatment time and pH had a considerable influence on COD and colour removal. On the contrary, none of the variables had a significant effect on the elimination of TN for which an average removal of 61 mg L−1 was obtained. The studied variables exhibited different effects on the four groups of organo-chlorinated compounds considered in this study, namely trihalomethanes (THMs), haloacetonitriles (HANs), haloketons (HKs) and 1,2-dichloroethane (DCA). Further analysis at more intense conditions, i.e. current intensity up to 18 A and reaction time up to 8 h revealed that high levels of decolourization (84%) could be achieved followed by low COD (51%) and ammonia (32%) removals. Apart from DCA, the concentration of chlorinated organics increased continuously with treatment time reaching values as high as 1.9 mg L−1, 753 μg L−1 and 431 μg L−1 of THMs, HANs and HKs, respectively.  相似文献   

3.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

4.
The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ∼5.5 h), using wastewater with high (mean ∼120 mg L−1) and low (mean ∼20 mg L−1) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life.  相似文献   

5.
The feasibility of low-temperature (7 °C) anaerobic digestion for the treatment of a trichloroethylene (TCE) contaminated wastewater was investigated. Two expanded granular sludge bed (EGSB) bioreactors (R1 and R2) were employed for the mineralisation of a synthetic volatile fatty acid based wastewater at an initial organic loading rate (OLR) of 3 kg COD m−3 d−1, and an operating temperature of 15 °C. Successive reductions in OLR to 0.75 kg COD m−3 d−1, and operational temperature to 7 °C, resulted in stable bioreactor operation by day 417, with COD removal efficiency and biogas CH4 content ≥74%, for both bioreactors. Subsequently, the influent to R1 was supplemented with increasing concentrations (10, 20, 30 mg l−1) of TCE, while R2 acted as a control. At an influent TCE concentration of 30 mg l−1, although phase average TCE removal rates of 79% were recorded, a sustained decrease in R1 performance was observed, with COD removal of 6%, and % biogas CH4 of 3% recorded on days 595 and 607, respectively. Specific methanogenic activity (SMA) assays identified a general shift from acetate- to hydrogen-mediated methanogenesis in both R1 and R2 biomass, while toxicity assays confirmed an increased sensitivity of the acetoclastic community in R1 to TCE and dichloroethylene (DCE), which contributed to acetate accumulation. Quantitative Polymerase Chain Reaction (qPCR) analysis of the methanogenic community confirmed the dominance of hydrogenotrophic methanogens in both R1 and R2, representing 71-89% of the total methanogenic population, however acetoclastic Methanosaeta were the dominant organisms, based on 16S rRNA gene clone library analysis of reactor biomass. The greatest change in the bacterial community, as demonstrated by UPGMA analysis of DGGE banding profiles, was observed in R1 biomass between days 417 and 609, although 88% similarity was retained between these sampling points.  相似文献   

6.
The treatment efficiency and membrane performance of a granular and suspended growth anaerobic membrane bioreactor (G-AnMBR and AnMBR respectively) were compared and evaluated. Both anaerobic MBRs were operated in parallel during 250 days with low strength wastewater and under UK weather conditions. Both systems presented COD and BOD removal efficiencies of 80–95% and >90% respectively. Effluent BOD remained between 5 and 15 mgBOD L−1 through the experimental period while effluent COD increased from 25 mg L−1 to 75 mg L−1 as temperature decreased from 25 °C to 10 °C respectively indicating the production of non biodegradable organics at lower temperatures. Although similar levels of low molecular weight organics were present in the sludge supernatant, recycling of the mixed liquor from the membrane tank to the bioreactor at a low upflow velocity enhanced interception of solids in the sludge bed of the G-AnMBR limiting the solid and colloidal load to the membrane as compared to the suspended system. Results from flux step test showed that critical flux increased from 4 to 13 L m−2 h−1 and from 3 to 5 L m−2 h−1 with gas sparging intensities varying from 0.007 m s−1 to 0.041. Additional long term trials in which the effect of gas sparging rate and backwashing efficiency were assessed confirmed the lower fouling propensity of the G-AnMBR.  相似文献   

7.
In this study, we investigated the efficiency of dissolved methane (D-CH4) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH4 discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH4 concentration could be reduced from 63 mg COD L−1 to 15 mg COD L−1; this, in turn, resulted in an increase in total methane (CH4) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH4 concentration was as high as 104 mg COD L−1 at 15 °C because of the higher solubility of CH4 gas in liquid; the average D-CH4 concentration was reduced to 14 mg COD L−1 by degasification. Accordingly, total CH4 recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH4 concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L−1) regardless of the HRT value, the CH4 discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH4 concentration could be reduced down to 12 ± 1 mg COD L−1 by degasification at an HRT of 6.7 h, the CH4 recovery rate was 1.5 times higher under degasification than under normal operation.  相似文献   

8.
Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 ± 816 and 13,966 ± 1998 μg L−1, respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m−2 d−1 were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m−2 d−1, the mean concentrations of MTBE and benzene were found to be 550 ± 133 and 65 ± 123 μg L−1 in the effluent of the RF. In the effluent of the PF system, respective mean MTBE and benzene concentrations of 49 ± 77 and 0.5 ± 0.2 μg L−1 were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 μg L−1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (∼100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 ± 10 and 0.6 ± 0.2 μg L−1 in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries.  相似文献   

9.
Petros Grafias 《Water research》2010,44(9):2773-2780
A hybrid process comprising biological degradation in a vertical-flow constructed wetland (CW) and electrochemical oxidation over boron-doped diamond electrodes to decolorize, mineralize and detoxify a leachate from olive pomace processing (OPL) was investigated. Two alternative treatment schemes were compared: According to the first treatment scheme, OPL was treated by electrochemical oxidation followed by treatment in a constructed wetland pilot unit (CW-A). The second scheme comprised of treatment in a constructed wetland followed by electrochemical treatment (CW-B). The constructed wetlands units were planted with Phragmites australis (reeds) and were fed intermittently at organic loadings between 5 and 15 g COD m−2 d−1 and a residence time of 3 d. Electrochemical oxidation (EO) was performed for 360 min at 20 A.Treatment of OPL in the wetland at 15 g COD m−2 d−1 led to mean COD and color reduction of 86% and 77%, respectively; the wetland effluent with a COD of about 800 mg L−1 was polished electrochemically for 360 min after which the overall COD and color removal of the combined process (i.e. CW-B/EO) was around 95%, while the final effluent was not toxic against the marine bacteria Vibrio fischeri.Electrochemical oxidation of the original OPL at COD values between 6250 and 14 100 mg L−1 led to moderate COD and color reduction (i.e. less than 40%) through zero order kinetics. When this was coupled to constructed wetland post-treatment (i.e. EO/CW-A), the overall COD and color removal was 81% and 58%, respectively. The decreased efficiency may be assigned to the increased toxicity of the electrochemically treated effluent which was only partially removed in the natural treatment system.  相似文献   

10.
The performance of a multistage passively aerated biological filter (PABF) packed with Nonwoven polyester fabric (NWPF) for municipal wastewater treatment was investigated under different operating conditions. The system was operated at different hydraulic retention times (HRTs) of 2.3, 1.72 and 1.38 h and corresponding to organic loading rates (OLRs) of 1.77, 2.15 and 2.9 kg BOD/m3. d. Increasing HRT and decreasing OLR, increased dissolved oxygen (DO) and consequently increased the removal rate of organic matters (87%), suspended solids (95.8%) and ammonia (88%). Profile results from different compartments showed that the major part of organic and suspended matters was removed in the upper layers of the system, whereas most of the suspended solids were trapped, while the nitrification process took place in the lower part of the PABF system because of the increase in DO concentrations. The results proved the advantage of using NWPF. It has pleated and rough surface which retain more biomass compared with plain surface. Excess biomass produced from PABF was negligible compared to conventional treatment systems.  相似文献   

11.
The influence of pesticide concentration, expressed as dissolved organic carbon (DOC), on combined solar photo-Fenton and biological oxidation treatment was studied using wastewater containing a mixture of five commercial pesticides, Vydate, Metomur, Couraze, Ditumur and Scala. Two initial DOC concentrations, 200 mg L−1 and 500 mg L−1 were assayed. Variation in biodegradability with photocatalytic treatment intensity was tested using Pseudomonas putida. Thus the mineralisation required for combining with biodegradation of intermediates by activated sludge was 33% and 55% at 200 mg L−1 and 500 mg L−1, respectively. Biotreatment was carried out in a stirred tank in sequencing batch reactor (SBR) mode. As revealed by the biodegradation kinetics, intermediates generated at the higher pesticide concentration caused lower carbon removal rates in spite of the longer photo-Fenton treatment time applied. One strategy for treating water with high concentrations of pesticides and overcoming the low biodegradability of photo-Fenton intermediates is to mix it with a biodegradable carbon source before biological oxidation. This combination of photo-Fenton and acclimatized activated sludge in several SBR cycles led to complete biodegradation of a concentrated pesticide solution of 500 mg L−1 DOC in 5 h with a carbon removal efficiency of 90%.  相似文献   

12.
Constructed wetlands with horizontal sub-surface flow (HF CWs) have successfully been used for treatment various types of wastewater for more than four decades. Most systems have been designed to treat municipal sewage but the use for wastewaters from agriculture, industry and landfill leachate in HF CWs is getting more attention nowadays. The paper summarizes the results from more than 400 HF CWs from 36 countries around the world. The survey revealed that the highest removal efficiencies for BOD5 and COD were achieved in systems treating municipal wastewater while the lowest efficiency was recorded for landfill leachate. The survey also revealed that HF CWs are successfully used for both secondary and tertiary treatment. The highest average inflow concentrations of BOD5 (652 mg l− 1) and COD (1865 mg l− 1) were recorded for industrial wastewaters followed by wastewaters from agriculture for BOD5 (464 mg l− 1) and landfill leachate for COD (933 mg l− 1). Hydraulic loading data reveal that the highest loaded systems are those treating wastewaters from agriculture and tertiary municipal wastewaters (average hydraulic loading rate 24.3 cm d− 1). On the other hand, landfill leachate systems in the survey were loaded with average only 2.7 cm d− 1. For both BOD5 and COD, the highest average loadings were recorded for agricultural wastewaters (541 and 1239 kg ha− 1 d− 1, respectively) followed by industrial wastewaters (365 and 1212 kg ha− 1 d− 1, respectively). The regression equations for BOD5 and COD inflow/outflow concentrations yielded very loose relationships. Much stronger relationships were found for inflow/outflow loadings and especially for COD. The influence of vegetation on removal of organics in HF CWs is not unanimously agreed but most studies indicated the positive effect of macrophytes.  相似文献   

13.
Dairy soiled water (DSW) is produced on dairy farms through the washing-down of milking parlours and holding areas, and is generally applied to land. However, there is a risk of nutrient loss to surface and ground waters from land application. The aim of this study was to use aerobic woodchip filters to remove organic matter, suspended solids (SS) and nutrients from DSW. This novel treatment method would allow the re-use of the final effluent from the woodchip filters to wash down yards, thereby reducing water usage and environmental risks associated with land spreading. Three replicate 100 m2 farm-scale woodchip filters, each 1 m deep, were constructed and operated to treat DSW from 300 cows over an 11-month study duration. The filters were loaded at a hydraulic loading rate of 30 L m−2 d−1, applied in four doses through a network of pipes on the filter surface. Average influent concentrations of chemical oxygen demand (COD), SS and total nitrogen (TN) of 5750 ± 1441 mg L−1, 602 ± 303 mg L−1 and 357 ± 100 mg L−1, respectively, were reduced by 66, 86 and 57% in the filters. Effluent nutrient concentrations remained relatively stable over the study period, indicating the effectiveness of the filter despite increasing and/or fluctuating influent concentrations. Woodchip filters are a low cost, minimal maintenance treatment system, using a renewable resource that can be easily integrated into existing farm infrastructure.  相似文献   

14.
This work investigated the removal of phenol from petroleum wastewater by the electro‐oxidation process. The experimental design was developed on a pilot‐scale electro‐oxidation system equipped with a cylindrical shape of graphite electrodes as an anode and stainless‐steel electrodes as a cathode. An initial study was performed based on operating variables such as current density and time on real petroleum wastewater. The optimum conditions were obtained as a current density of 3 mA/cm2 and time 15 min. Under these applied optimum conditions, complete phenol removal from an initial concentration of about 6.8 mg/L was achieved. Also, 50–60% removal of organic matter in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD). The removal of organic matter using electro‐oxidation requires a long reaction time. Also, the economic study indicated that the energy consumption was determined to be 0.79 kWh/m3 and the operating cost was 0.051 $/m3 which is very economical compared with conventional methods.  相似文献   

15.
New Activated Sludge (NAS®) is a hybrid, floc-based nitrogen removal process without carbon addition, based on the control of sludge retention times (SRT) and dissolved oxygen (DO) levels. The aim of this study was to examine the performance of a retrofitted four-stage NAS® plant, including on-line measurements of greenhouse gas emissions (N2O and CH4). The plant treated anaerobically digested industrial wastewater, containing 264 mg N L−1, 1154 mg chemical oxygen demand (COD) L−1 and an inorganic carbon alkalinity of 34 meq L−1. The batch-fed partial nitritation step received an overall nitrogen loading rate of 0.18-0.22 kg N m−3 d−1, thereby oxidized nitrogen to nitrite (45-47%) and some nitrate (13-15%), but also to N2O (5.1-6.6%). This was achieved at a SRT of 1.7 d and DO around 1.0 mg O2 L−1. Subsequently, anammox, denitrification and nitrification compartments were followed by a final settler, at an overall SRT of 46 d. None of the latter three reactors emitted N2O. In the anammox step, 0.26 kg N m−3 d−1 was removed, with an estimated contribution of 71% by the genus Kuenenia, which constituted 3.1% of the biomass. Overall, a nitrogen removal efficiency of 95% was obtained, yielding a dischargeable effluent. Retrofitting floc-based nitrification/denitrification with carbon addition to NAS® allowed to save 40% of the operational wastewater treatment costs. Yet, a decrease of the N2O emissions by about 50% is necessary in order to obtain a CO2 neutral footprint. The impact of emitted CH4 was 20 times lower.  相似文献   

16.
Halophyte filter beds for treatment of saline wastewater from aquaculture   总被引:1,自引:0,他引:1  
The expansion of aquaculture and the recent development of more intensive land-based marine farms require efficient and cost-effective systems for treatment of highly nutrient-rich saline wastewater. Constructed wetlands with halophytic plants offer the potential for waste-stream treatment combined with production of valuable secondary plant crops. Pilot wetland filter beds, constructed in triplicate and planted with the saltmarsh plant Salicornia europaea, were evaluated over 88 days under commercial operating conditions on a marine fish and shrimp farm. Nitrogen waste was primarily in the form of dissolved inorganic nitrogen (TDIN) and was removed by 98.2 ± 2.2% under ambient loadings of 109-383 μmol l−1. There was a linear relationship between TDIN uptake and loading over the range of inputs tested. At peak loadings of up to 8185 ± 590 μmol l−1 (equivalent to 600 mmol N m−2 d−1), the filter beds removed between 30 and 58% (250 mmol N m−2 d−1) of influent TDIN. Influent dissolved inorganic phosphorus levels ranged from 34 to 90 μmol l−1, with 36-89% reduction under routine operations. Dissolved organic nitrogen (DON) loadings were lower (11-144 μmol l−1), and between 23 and 69% of influent DON was removed during routine operation, with no significant removal of DON under high TDIN loading. Over the 88-day study, cumulative nitrogen removal was 1.28 mol m−2, of which 1.09 mol m−2 was retained in plant tissue, with plant uptake ranging from 2.4 to 27.0 mmol N g−1 dry weight d−1. The results demonstrate the effectiveness of N and P removal from wastewater from land-based intensive marine aquaculture farms by constructed wetlands planted with S. europaea.  相似文献   

17.
Biological removal of phenol from strong wastewaters using a novel MSBR   总被引:2,自引:0,他引:2  
In this study, the performance of a moving-bed sequencing batch reactor (MSBR) that removes phenol from wastewater is presented. The effects of phenol concentration (50-3325 mg L−1), filling time (0-4 h) and aerating time (4-18 h) on the performance of the MSBR are given in terms of phenol and COD removal efficiencies. Moreover, the effect of the moving media on the overall performance of the reactor is also determined. The reactor can completely remove phenol and COD at inlet concentrations up to 3000 mg phenol L−1 (6780 mg COD L−1), which was the inhibition concentration, and with a 24-h cycle time. The filling time range tested here did not significantly affect phenol or COD removal. The optimum hydraulic retention time (HRT) for the MSBR is 40 h and the critical phenol loading rate is 83.4 g phenol m−3 h−1, which gives a phenol removal efficiency of 99%. The reactor can also withstand shock loads from slug feeding. The moving bed contribution to phenol and COD removal efficiencies was up to 28.1 and 34.7%, respectively, at the phenol loading rate of 83.4 g m−3 h−1. The findings of this investigation suggest that MSBR can be a robust and promising process for effectively treating wastewaters containing inhibitor or recalcitrant compounds in industrial settings.  相似文献   

18.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

19.
Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification–denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L−1 d−1, 0.2 gN L−1 d−1, and 0.08 gP L−1 d−1, and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L−1 d−1. Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = −0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7–9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.  相似文献   

20.
This work aimed to assess the technical and energetic feasibility of a passively aerated laboratory-scale trickling filter, configured as a two-stage system, to produce urban wastewater (UWW) reusable in agriculture. The trickling filter was fed continuously with high-strength UWW at four hydraulic retention times (HRTs), that is, 10, 5, 2 and 1 day, corresponding to organic loading rates (OLRs) of 0.1, 0.2, 0.5 and 0.9 kg COD/m3/d, respectively. The results revealed a good performance in organic load removal and nitrification at the four HRTs. The trickling filter showed high organic pollutant removal efficiencies of up to 93%, 94% and 98% for chemical oxygen demand (COD), BOD5 and total suspended solid (TSS), respectively, as well as high ammonia nitrogen removal above 96% at the shortest HRT of 1 day. All physicochemical parameters were significantly lower than the allowable limits set out in ISO 16075 for category C (non-food crop irrigation) irrigation water. The reuse of treated UWW in irrigation led to germination indexes and growth parameters of triticale (Triticosecale Wittm.) almost equal to those obtained using tap water. Energy use was found to be about 0.2754 kWh/m3 of treated wastewater, making it competitive with trickling filter plants reported in the literature. The simplicity and energy efficiency of the developed trickling filter system, combined with its capacity for almost full nitrification, make it appealing for sewage treatment in small communities in developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号