首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Velten S  Hammes F  Boller M  Egli T 《Water research》2007,41(9):1973-1983
Granular activated carbon (GAC) filtration is used during drinking water treatment for the removal of micropollutants such as taste and odour compounds, halogenated hydrocarbons, pesticides and pharmaceuticals. In addition, the active microbial biomass established on GAC is responsible for the removal of biodegradable dissolved organic carbon compounds present in water or formed during oxidation (e.g., ozonation and chlorination) processes. In order to conduct correct kinetic evaluations of DOC removal during drinking water treatment, and to assess the state and performance of full-scale GAC filter installations, an accurate and sensitive method for active biomass determination on GAC is required. We have developed a straight-forward method based on direct measurement of the total adenosine tri-phosphate (ATP) content of a GAC sample and other support media. In this method, we have combined flow-cytometric absolute cell counting and ATP analysis to derive case-specific ATP/cell conversion values. In this study, we present the detailed standardisation of the ATP method. An uncertainty assessment has shown that heterogeneous colonisation of the GAC particles makes the largest contribution to the combined standard uncertainty of the method. The method was applied for the investigation of biofilm formation during the start-up period of a GAC pilot-scale plant treating Lake Zurich water. A rapid increase in the biomass of up to 1.1 x 10(10)cells/g GAC dry weight (DW) within the first 33 days was observed, followed by a slight decrease to an average steady-state concentration of 7.9 x 10(9)cells/g GAC DW. It was shown that the method can be used to determine the biomass attached to the GAC for both stable and developing biofilms.  相似文献   

2.
Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (±0.1 [standard deviation]) × 107 cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 107 PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (±9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 107 cells per filter) on day 1, 7.5 (±2.8) × 107 and 1.1 (±0.5) × 107 P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 106 PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (±5%) and 56% (±1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial organisms from attached growth systems for effluent quality improvement.  相似文献   

3.
Ozonation followed by granular activated carbon (GAC) is one of the advanced drinking water treatments. During GAC treatment, ammonia can be oxidized by ammonia-oxidizing microorganisms associated with GAC. However, there is little information on the abundance and diversity of ammonia-oxidizing microorganisms on GAC. In this study, the nitrification activity of GAC and the settlement of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in GAC were monitored at a new full-scale advanced drinking water treatment plant in Japan for 1 year after plant start-up. Prechlorination was implemented at the receiving well for the first 10 months of operation to treat ammonia in raw water. During this prechlorination period, levels of both AOA and AOB associated with GAC were below the quantification limit. After prechlorination was stopped, 105 copies g-dry−1 of AOA amoA genes were detected within 3 weeks and the quantities ultimately reached 106-107 copies g-dry−1, while levels of AOB amoA genes still remained below the quantification limit. This observation indicates that AOA can settle in GAC rapidly without prechlorination. The nitrification activity of GAC increased concurrently with the settlement of AOA after prechlorination was stopped. Estimation of in situ cell-specific ammonia-oxidation activity for AOA on the assumption that only AOA and AOB determined can contribute to nitrification suggests that AOA may account for most of the ammonia-oxidation. However, further validation on AOB contribution is required.  相似文献   

4.
A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP). Modelling of biomass removal indicated that a series of six to eight sonication treatments of 2 min each yielded more than 90% of the attached active biomass. The ATP concentrations in 30 different GAC filters at nine treatment plants in The Netherlands ranged from 25 to 5000 ng ATP cm(-3) GAC, with the highest concentrations at long filter run times and pretreatment with ozone. A similar concentration range was observed in nine rapid sand (RS) filters. ATP concentrations correlated significantly (p<0.05) with total direct bacterial cell counts in each of these filter types, but the median value of the ATP content per cell in GAC filters (2.1 x 10(-8) ng ATP/cell) was much lower than in the RS filters (3.6 x 10(-7) ng ATP/cell). Average biofilm concentrations ranging from 500 to 10(5) pg ATP cm(-2) were calculated assuming spherical shapes for the GAC particles but values were about 20 times lower when the surface of pores >1 microm diameter is included in these calculations. The quantitative biomass analysis with ATP enables direct comparisons with biofilm concentrations reported for spiral wound membranes used in water treatment, for distribution system pipes and other aquatic environments.  相似文献   

5.
Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and 13C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated 13C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium.  相似文献   

6.
Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10−3 h−1. GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA > NMOR > NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants.  相似文献   

7.
Boon N  Pycke BF  Marzorati M  Hammes F 《Water research》2011,45(19):6355-6361
The quality of drinking water is ensured by hygienic barriers and filtration steps, such as ozonation and granular activated carbon (GAC) filtration. Apart from adsorption, GAC filtration involves microbial processes that remove biodegradable organic carbon from the ozonated ground or surface water and ensures biological stability of the treated water. In this study, microbial community dynamics in were monitored during the start-up and maturation of an undisturbed pilot-scale GAC filter at 4 depths (10, 45, 80 and 115 cm) over a period of 6 months. New ecological tools, based on 16S rRNA gene-DGGE, were correlated to filter performance and microbial activity and showed that the microbial gradients developing in the filter was of importance. At 10 cm from the top, receiving the freshly ozonated water with the highest concentration of nutrients, the microbial community dynamics were minimal and the species richness remained low. However, the GAC samples at 80-115 cm showed a 2-3 times higher species richness than the 10-45 cm samples. The highest biomass densities were observed at 45-80 cm, which corresponded with maximum removal of dissolved and assimilable organic carbon. Furthermore, the start-up period was clearly distinguishable using the Lorenz analysis, as after 80 days, the microbial community shifted to an apparent steady-state condition with increased evenness. This study showed that GAC biofilter performance is not necessarily correlated to biomass concentration, but rather that an elevated functionality can be the result of increased microbial community richness, evenness and dynamics.  相似文献   

8.
Flow rate, electron donor addition, and biomass control were evaluated in order to optimize perchlorate (ClO4) removal from drinking water using biologically active carbon (BAC) filtration. Influent dissolved oxygen (DO) was lowered from ambient conditions to approximately 2.5 mg/L for all experiments using a nitrogen sparge. When influent nitrate concentration was 0-2.0 mg/L, 1.6-2.8 mg/L as carbon of acetate or ethanol was required to achieve and sustain the complete removal of 50 μg/L perchlorate in a BAC filter. Most or all of the exogenous acetate and ethanol was removed during biofiltration. When a 72-h electron donor feed failure was simulated, a maximum perchlorate breakthrough of 18 μg/L was observed and, once electron donor was reapplied, 9 days were required to reestablish complete perchlorate removal. During a 24-h electron donor feed failure simulation, the maximum effluent perchlorate concentration detected was 6.7 μg/L. Within 24 h of reactivating the electron donor, the filter regained its capacity to consistently remove 50 μg/L perchlorate to below detection. Although biomass growth diminished the filter's ability to consistently remove perchlorate, a cleaning procedure immediately restored stable, complete perchlorate removal. This cleaning procedure was required approximately every 50 days (4800 bed volumes) when influent DO concentration was 2.5 mg/L. Empty-bed contact time (EBCT) experiments showed that 80% perchlorate removal was achieved using a 5-min EBCT, and complete perchlorate removal was observed for an EBCT of 9 min. It was also demonstrated that BAC filtration consistently removed perchlorate to below detection for influent perchlorate concentrations ranging from 10 to 300 μg/L, influent sulfate concentrations between 0 and 220 mg/L, influent pH values of 6.5-9.0, and operating temperatures of 5-22°C.  相似文献   

9.
Experimental testing and numerical simulations were conducted to assess the effects of elevated water vapor concentrations on the ability of granular activated carbon (GAC) to achieve load equalization of dynamically varying gas-phase toluene concentrations. Columns packed with Calgon BPL 4 × 6 mesh GAC were subjected to intermittent (8 h/day) toluene loading in air streams containing up to 90% relative humidity. Influent toluene concentrations ranged from 100 to 1000 ppmv, and GAC column empty bed residence times ranged from 1.5 to 10 s. In comparison to load equalization performance achieved with dry air, high relative humidity improved load attenuation at high influent toluene concentration (e.g., 1000 ppmv) but decreased the degree of load attenuation at low influent toluene concentration (e.g., 100 ppmv). Model simulations conducted using a pore and surface diffusion model were in good general agreement with experimental observations. Collectively, results demonstrate that GAC columns can be of practical benefit as passively-operated load equalization devices even in the case of high relative humidity. Such systems may prove useful as a pre-treatment process for biofilters and other air pollution control devices that would otherwise be subjected to wide variation in contaminant loading.  相似文献   

10.
Li Z  Dvorak B  Li X 《Water research》2012,46(9):2828-2836
Estrogenic compounds in drinking water sources pose potential threats to human health. Treatment technologies are needed to effectively remove these compounds for the production of safe drinking water. In this study, GAC adsorption was first tested for its ability to remove a model estrogenic compound, 17β-estradiol (E2). Although GAC showed a relatively high adsorption capacity for E2 in isotherm experiments, it appeared to have a long mass transfer zone in a GAC column reactor, causing an early leakage of E2 in the effluent. With an influent E2 concentration of 20 μg/L, the GAC reactor was able to bring down effluent E2 to ∼200 ng/L. To further enhance E2 removal, the GAC reactor was converted to a biologically active carbon (BAC) reactor by promoting biofilm growth in the reactor. Under optimal operating conditions, the BAC reactor had an effluent E2 concentration of ∼50 ng/L. With the empty bed contact times tested, the reactor exhibited more robust E2 removal performance under the BAC operation than under the GAC operation. It is noted that estrone (E1), an E2 biodegradation intermediate, was frequently detected in reactor effluent during the BAC operation. Results from this study suggested that BAC could be an effective drinking water treatment process for E2 removal and in the meantime E1 accumulation needs to be addressed.  相似文献   

11.
A synthetic feed, containing acetate as the only carbon source, was used to start-up four different anaerobic expanded-bed reactors containing three different types of microbial attachment media. The media types used were low-density anthracite, granular activated carbon (GAC) and two sizes of sand. All media types were of the same average diameter, 0.7 mm, except for a smaller sand, 0.35 mm. These media types were chosen to compare surface roughness, macroscopic shear stresses due to upflow velocity and sphericity. The 0.7 mm sand required the greatest upflow velocity, 16 cm/s, while the other reactors had upflow velocities of 5.5–6.0 cm/s. Sand had the least surface roughness and GAC had the roughest surface, while anthracite had the most angular shape. At steady-state, the GAC reactor retained 3.75–10 times the attached biomass retained on the other media tested and the GAC reactor accumulated biomass at a faster rate during start-up. Shear losses reflected the biomass accumulation with the two sand and anthracite media having shear loss coefficients 6–20 times greater than that of the GAC medium. Sand induced the formation of sludge granules in both sand reactors with two species of methanogens and stability of the sludge blankets was critical to reactor performance. Scanning electron microscopy demonstrated that attached growth developed in crevices where biomass was protected from shear forces. Attached growth on the sand and anthracite media was located only in crevices, while the GAC medium is completely covered with crevices and biofilm developed on the entire GAC particle. Surface roughness was critical to biofilm development with the rougher surface providing the better attachment medium.  相似文献   

12.
The removal of natural organic matter (NOM) in term of CODMn by up-flow biologically activated carbon filter (UBACF) and down-flow biologically activated carbon filter (DBACF) was investigated in a pilot-scale test. The impacts of the molecular weight distribution of NOM on its degradation by the UBACF and DBACF were evaluated. The relationship between biodegradation and the microbial properties in the UBACF and DBACF were approached as well. The feed water of the UBACF and DBACF were pumped from the effluent of the rapid sand filtration (RSF) of Chengnan Drinking Water Treatment Plant (CDWTP), Huaian, Jiangsu Province, China. When the adsorption was the dominant mechanism of NOM removal at the initial stage of operation, the CODMn removal efficiency by the UBACF was lower than the DBACF. However, with the microbes gradually accumulated and biofilm formed, the removal of CODMn by the UBACF increased correspondingly to 25.3%, at the steady-state operation and was approximately 10% higher than that by the DBACF. Heterotrophy plate count (HPC) in the finished water of the UBACF was observed 30% higher than that of the DBACF. The UBACF effluent had higher concentration of detached bacteria whereas the DBACF harbored more attached biomass. The highest attached biomass concentration of the UBACF was found in the middle of the GAC bed. On the contrary, the highest attached biomass concentration of the DBACF was found on the top of the GAC bed. Furthermore, a total of 9479 reads by pyrosequencing was obtained from samples of the UBACF and DBACF effluents. The UBACF effluent had a more diverse microbial community and more even distribution of species than the DBACF effluent did. Alphaproteobacteria and Betaproteobacteria were the dominant groups in the finished water of the UBACF and DBACF. The higher organic matter removal by the UBACF was attributed to the presence of its higher biologically activity.  相似文献   

13.
This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters.Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC.The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.  相似文献   

14.
饮用水生物强化过滤工艺生物膜特性研究   总被引:3,自引:0,他引:3  
以水厂沉淀池出水为原水,对生物强化过滤工艺的生物膜形成过程进行了研究,探讨了不同滤料介质组成的生物滤柱的生物膜特性,分析了膜形成过程中污染物的去除效果和滤柱生物量的变化情况,并对膜形成过程的影响因素进行了讨论.结果表明,在活性炭-石英砂滤料上生物膜形成效果要优于无烟煤-石英砂双层滤料和石英砂单层滤料;反冲洗水含氯对生物膜形成有负面影响,对无烟煤-石英砂滤柱的影响尤为显著;可以CODMn和NO-2的去除率作为生物膜成熟的评价指标.  相似文献   

15.
Ecological equilibrium on biological activated carbon   总被引:15,自引:0,他引:15  
M. Scholz  R.J. Martin 《Water research》1997,31(12):2959-2968
This paper examines the potential of a biological activity control system (BACS) for biological activated carbon (BAC) in comparison to granular activated carbon (GAC) for the treatment of potable water. The overall objective of the project is to produce drinking water of a higher quality more economically by developing a BACS for exhausted GAC that can be transformed to BAC by the development of a natural biofilm during the bio-regeneration mode. The research therefore may be interesting for water companies and the activated carbon industry. Findings show that the lifetime of a GAC filter can be significantly extended by maintaining an active biofilm that has to be controlled in order to avoid filter clogging. The most important parameters are dissolved oxygen (DO), pH and a correct balance of nutrients, which enables a natural control of the biomass. pH control was required to maintain an optimal bacteria-protozoa level. Excessive growth of filamentous bacteria can be prevented by a decrease in DO, increase in pH and the reduction of one essential nutrient, e.g. total phosphorus (P). Total organic carbon (TOC) and chemical oxygen demand (COD) values were reduced by bioactivity. DO, turbidity and suspended solids (SS) values were kept in acceptable ranges with respect to drinking water objectives. Plants without a significant population of protozoa deliver turbid low quality effluent high on SS and biochemical oxygen demand (BOD). It was possible to control the biofilm on GAC containing a natural biofilm and BAC during the bio-regeneration mode. Natural and artificial bio-regeneration lead to similar performance characteristics.  相似文献   

16.
An expanded-bed granular activated carbon (GAC) anaerobic reactor was developed to treat terephthalate-containing wastewater. Terephthalate inhibits biological anaerobic degradation of terephthalate and methane production when present at a concentration of more than 150 mg/L. In the GAC anaerobic reactor developed here, degradation of terephthalate and other organic compounds occurred smoothly and stably with removal and methane fermentation ratios of more than 90% under a chemical oxygen demand (COD) loading rate of 4 kg COD/(m3 d) and a terephthalate loading rate of 1 kg terephthalate/(m3 d).  相似文献   

17.
为实现水资源的循环利用,采用生物活性炭(BAC)工艺对某钢铁企业的排水进行深度处理。在获得良好除污效果的基础上对BAC上的生物量及铁细菌进行了研究,以期为优化设计提供依据。结果表明,在显微镜下可清楚地观察到生物活性炭上成熟的生物膜,沿水流方向随着深度的增加,生物量由上层105cfu/g的数量级减少至下层103cfu/g的数量级;在一个反冲洗周期内,上层生物量每2d增加一个数量级;反冲洗后的生物量仍可保持在103cfu/g的数量级,保证了BAC滤柱在下阶段的稳定运行。对铁细菌的分离、纯化和鉴定表明,在近一年的运行中,已培养出高效除铁菌,上、下层的铁细菌数量分别为7.60×103和3.73×102cfu/g,比细菌总数平均低两个数量级,根据形貌特征和生长环境判别其为嘉氏铁柄杆菌。  相似文献   

18.
The Ontario Ministry of the Environment (MOE) conducted a survey in 2006 on emerging organic contaminants (EOCs) which included pharmaceuticals, hormones and bisphenol A (BPA). The survey collected 258 samples over a 16 month period from selected source waters and 17 drinking water systems (DWSs), and analyzed them for 48 EOCs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and isotope dilution mass spectrometry (IDMS) for the highest precision and accuracy of analytical data possible. 27 of the 48 target EOCs were detected in source water, finished drinking water, or both. DWSs using river and lake source water accounted for > 90% detections. Of the 27 EOCs found, we also reported the first detection of two antibiotics roxithromycin and enrofloxacin in environmental samples. The most frequently detected compounds (≥ 10%) in finished drinking water were carbamazepine (CBZ), gemfibrozil (GFB), ibuprofen (IBU), and BPA; with their concentrations accurately determined by using IDMS and calculated to be 4 to 10 times lower than those measured in the source water. Comparison of plant specific data allowed us to determine removal efficiency (RE) of these four most frequently detected compounds in Ontario DWSs. The RE of CBZ was determined to be from 71 to 93% for DWSs using granulated activated carbon (GAC); and was 75% for DWSs using GAC followed by ultraviolet irradiation (UV). The observed RE of GFB was between 44 and 55% in DWSs using GAC and increased to 82% when GAC was followed by UV. The use of GAC or GAC followed by UV provided an RE improvement of BPA from 80 to 99%. These detected concentration levels are well below the predicted no effect concentration or total allowable concentration reported in the literature. Additional targeted, site specific comparative research is required to fully assess the effectiveness of Ontario DWSs to remove particular compounds of concern.  相似文献   

19.
Urfer D  Huck PM 《Water research》2001,35(6):1469-1477
A simple respirometric method was developed and applied for the measurement of biomass activity in bench-scale drinking water biofilters. The results obtained with the new method, i.e. biomass respiration potential (BRP), indicated a high sensitivity allowing the quantification of the activity of low amounts of biomass. The analysis of duplicate samples showed a reasonable reproducibility, i.e. average coefficient of variation of 14% (n = 19). The calculation of the ratio between biomass activity and the amount of viable biomass (phospholipid) at different filter depths indicated a substantial increase of this ratio with filter depth. This indicated an increased biomass activity per unit amount of viable biomass deeper in the biofilters, where biofilm thickness is low. The comparison of the filter profiles of biomass activity and dissolved biodegradable organic matter (BOM), expressed as theoretical oxygen demand, showed a high correlation between these profiles. Consequently, BRP results appear to be good indicators of the BOM removal capacity of the filter biomass. Therefore, BRP results can potentially be used in certain cases instead of BOM measurements for the assessment of the BOM removal capacity of drinking water biofilters, operated under different conditions. This is important because of the relative complexity of the measurements of BOM surrogates, e.g. assimilable organic carbon and biodegradable dissolved organic carbon, and BOM components.  相似文献   

20.
Choi YC  Li X  Raskin L  Morgenroth E 《Water research》2008,42(13):3425-3434
Fixed bed biofilm reactors with granular activated carbon (GAC) or glass beads as support media were used to evaluate the influence of short-term (12h) and long-term (23 days) increases of influent dissolved oxygen (DO) concentrations on biological perchlorate removal. The goal was to evaluate the extent by which chemisorption of oxygen to GAC can enhance the stability of biological perchlorate reduction. Baseline influent concentrations were 50 microg/L of perchlorate, 2 mg/L of acetate as C, and 1mg/L of DO. Perchlorate removal in the glass bead reactor seized immediately after increasing influent DO concentrations from 1 to 4 mg/L since glass beads have no sorptive capacity. In the biologically active carbon (BAC) reactor, chemisorption of oxygen to GAC removed a substantial fraction of the influent DO, and perchlorate removal was maintained during short-term increases of influent DO levels up to 8 mg/L. During long-term exposure to influent DO concentrations of 8.5mg/L, effluent perchlorate and DO concentrations increased slowly. Subsequent exposure of the BAC reactor bed to low DO concentrations partially regenerated the capacity for oxygen chemisorption. Microbial analyses indicated similar microbial communities in both reactors, which confirmed that the differences in reactor performance during dynamic loading conditions could be attributed to the sorptive properties of GAC. Using a sorptive biofilm support medium can enhance biological perchlorate removal under dynamic loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号