首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Harif T  Khai M  Adin A 《Water research》2012,46(10):3177-3188
Electrocoagulation (EC) and chemical coagulation (CC) are employed in water treatment for particle removal. Although both are used for similar purposes, they differ in their dosing method - in EC the coagulant is added by electrolytic oxidation of an appropriate anode material, while in CC dissolution of a chemical coagulant is used. These different methods in fact induce different chemical environments, which should impact coagulation/flocculation mechanisms and subsequent floc formation. Hence, the process implications when choosing which to apply should be significant. This study elucidates differences in coagulation/flocculation mechanisms in EC versus CC and their subsequent effect on floc growth kinetics and structural evolution. A buffered kaolin suspension served as a representative solution that underwent EC and CC by applying aluminum via additive dosing regime in batch mode. In EC an aluminum anode generated the active species while in CC, commercial alum was used. Aluminum equivalent doses were applied, at initial pH values of 5, 6.5 and 8, while samples were taken over pre-determined time intervals, and analyzed for pH, particle size distribution, ζ potential, and structural properties. EC generated fragile flocs, compared to CC, over a wider pH range, at a substantially higher growth rate, that were prone to restructuring and compaction. The results suggest that the flocculation mechanism governing EC in sweep floc conditions is of Diffusion Limited Cluster Aggregation (DCLA) nature, versus a Reaction Limited Cluster Aggregation (RLCA) type in CC. The implications of these differences are discussed.  相似文献   

2.
Harif T  Adin A 《Water research》2007,41(13):2951-2961
Electroflocculation (EF) is becoming recognized as an alternative process to conventional coagulation/flocculation, although both are somewhat different. The electrical current applied in EF to generate the active coagulant species creates a unique chemical/physical environment which affects coagulation mechanisms and subsequent aggregate formation. The chemical and physical characteristics of an electroflocculated kaolin suspension and the morphology/fractal dimension of the resulting aggregates were examined. An EF cell was operated in batch mode and comprised of two concentric electrodes-a stainless steel cathode (outer electrode) and an aluminum anode (inner electrode). The cell was run at constant current between 0.05 and 0.3A, velocity gradients were 0-30s(-1). The results show that the simultaneous hydrolysis occurring has a profound effect on the final pH and consequently on the coagulation mechanisms as indicated by differences in zeta potential measured. Moreover, the electrical field induced by passage of a current has an apparent effect on particle transport. A linear correlation between floc size and current was observed and lower fractal dimensions were obtained for larger floc sizes. The fractal dimensions of the flocs obtained in EF are on average lower than those reported for conventional coagulation.  相似文献   

3.
Wu YF  Liu W  Gao NY  Tao T 《Water research》2011,45(12):3704-3711
There are limited studies available on titanium salt flocculation. In this research, coagulation experiments of titanium sulfate were conducted using both distilled water and kaolin clay suspension. Results showed that titanium sulfate flocculation was most effective in the pH range 4-6, and negligible concentrations of titanium were found in the well-flocculated water. The floc isoelectric point (IEP) was found to be near pH 5. Measurements showed that the titanium flocs possessed greater density, diameter and settling velocity than the aluminum flocs. The titanium flocs were composed of TiO(OH)2, which would change from the amorphous phase into anatase titanium dioxide under elevated temperatures. Floc images showed the structural similarity of titanium and aluminum flocs. Laboratory results and a pilot experiment showed that titanium sulfate could be an alternative coagulant for water and wastewater treatment.  相似文献   

4.
Kobayashi M 《Water research》2005,39(14):3273-3278
To obtain the strength of flocs against breakup is crucial for controlling flocculation in water treatment and predicting transport of colloidal particles in aqueous environments. Recently, the author reported a method to obtain floc strength from a simple experiment of floc breakup subjected to a laminar converging flow. In this study, this method was applied to natural soil flocs. The flocs were formed by coagulation with 0.5 M NaCl (pH 5.4-5.5, pH 6.6) solutions, 0.1M CaCl2 (pH 6.4-6.9) solutions, or acidified distilled water with dilute HCl (pH 5.6). Obtained floc strengths were 0.3, 0.7 and 4 nN for Na-, Ca-, and H-coagulated flocs, respectively. Also, floc strength did not change with floc size. These values of floc strengths were 1-3 orders smaller than those of flocs formed with polymer flocculants and/or precipitated ferric or aluminum coagulants.  相似文献   

5.
Cao B  Gao B  Liu X  Wang M  Yang Z  Yue Q 《Water research》2011,45(18):6181-6188
The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces.  相似文献   

6.
Interaction between Cryptosporidium oocysts and water treatment coagulants   总被引:3,自引:0,他引:3  
The electrokinetic properties of gamma-irradiated Cryptosporidium oocysts in the presence of coagulants (ferric chloride and alum) and coagulant aids (DADMAC based cationic polyelectrolytes) have been studied. The zeta potential of the oocysts was unaffected by the addition of ferric chloride at all pH values (3-10) studied. Addition of alum resulted in reversal of the oocysts charge, which suggests that the initial stage in the coagulation process leading to floc formation proceeds via the adsorption of hydrolysed aluminium species. The cationic polyelectrolyte Magnafloc LT35 was adsorbed onto iron flocs at doses of 0.1 mg/L even against an electrostatic barrier. The cationic polyelectrolyte only adsorbed and caused charge reversal at the oocyst surface at around 0.4 mg/L, suggesting a lower affinity for this surface. These results indicate that the oocysts, unlike inorganic colloidal materials such as metal oxides, appear to possess a lower surface density of active or charged sites. The lower density of sites, combined with the rapid precipitation of iron salts, may be responsible for the lack of specific adsorption of either hydroxylated ferric species or primary iron hydroxide particles on the oocysts. Further, this suggests that a process of sweep flocculation, where oocysts are engulfed in flocs during coagulation and floc formation, is the more likely mechanism involved. By comparison, it is likely that the specific interaction of hydrolysed aluminium species with the oocysts surface would result in a stronger link at the oocyst-floc interface and that the flocculation process may initially proceed via charge neutralisation.  相似文献   

7.
A review of floc strength and breakage   总被引:19,自引:0,他引:19  
The main focus of the paper is to review current understanding of floc structure and strength. This has been done by reviewing current theoretical understanding of floc growth and breakage and an analysis of different techniques used for measuring floc strength. An overview has also been made of the general trends seen in floc strength analysis. The rate of floc formation is a balance between breakage and aggregation with flocs eventually reaching a steady-state size for a given shear rate. The steady-state floc size for a particular shear rate can, therefore, be a good indicator of floc strength. This has resulted in the development of a range of techniques to measure floc size at different applied shear levels using a combination of one or more of the following tools: light scattering and transmission; microscopy; photography; video and image analysis software. Floc strength may be simply quantified using the initial floc size for a given shear rate and the floc strength factor. More complex techniques have used theoretical modelling to determine whether flocs break by large-scale fragmentation or smaller-scale surface erosion effects, although this interpretation is open to debate. Impeller-based mixing, ultrasound and vibrating columns have all been used to provide a uniform, accurate and controllable dissipation of energy onto a floc suspension to determine floc strength. Other more recent techniques have used sensitive micromanipulators to measure the force required to break or compress individual flocs, although these techniques have been limited to the measurement of only a few hundred flocs. General trends emerge showing that smaller flocs tend to have greater strength than larger flocs, whilst the use of polymer seems to give increased strength to only some types of floc. Finally, a comparison of the strength of different types of floc (activated sludge flocs, organic matter flocs, sweep flocs and charge neutralised flocs) has been made highlighting differences in relative floc strength.  相似文献   

8.
对吸附架桥机理主导下阴离子聚丙烯酰胺(APAM)的絮凝过程进行了研究,通过改变絮凝剂投加工况,对比分析常规絮凝与多级絮凝在污染物去除效果、絮体性能、絮体生长动力学与污泥调理能耗等方面的差异。结果表明,相同投药量下,两级絮凝的出水浊度低于三级絮凝和常规絮凝,两级絮凝在最少的APAM投加量(2 mg/L)下达到最低的出水浊度(19.53 NTU);与常规絮凝相比,两级絮凝的絮体成长速率、平均粒径和沉降速率分别增加12.67%、30μm、36.74%。两级絮凝在投加间隔为240 s、投配比为1∶1条件下絮凝效能最优,出水浊度为15.34 NTU,絮体沉降速率为1.1 NTU/s,絮体密度达到1.123 4 g/cm3。絮体破碎再絮凝过程中,两级絮凝与常规絮凝破碎后均能恢复至破碎前水平,但破碎后均出现不可逆的絮体结构破损,粒径在0~100μm的絮体颗粒增多,粒径>400μm的絮体减少,破碎后两级絮凝的絮体强度因子(68.15%)高于常规絮凝(41.63%),两级絮凝的絮体强度和抗破碎剪切能力更高。在剩余污泥调理方面,两级絮凝产生的污泥只需要投加40mg/L的APAM就可以达到最低的滤饼含水率(75.5%)。因此,两级絮凝可以显著提升除浊效能与絮体性能,是强化絮凝的发展方向。  相似文献   

9.
Lin JL  Huang C  Chin CJ  Pan JR 《Water research》2008,42(17):4457-4466
The size and structure of flocs during floc formation were monitored for various coagulation mechanisms. Two distinctive mechanisms, namely, enmeshment and electrostatic patch, govern the dynamics of kaolin particles coagulation by polyaluminum chloride (PACl). They were investigated by small angle static light scattering (SASLS) and solid-state 27Al NMR. In addition, a novel wet SEM (WSEM) was used in-situ to image the morphology of the aggregate in aqueous solution. Synthetic suspended particles were coagulated by two PACl products, a commercial product (PACl) and one laboratory product (PACl-E). The PACl-E contained more than 60% Al13 while the PACl contained only 7% Al13, with large percentage of colloidal Al. For coagulation by PACl at neutral pH and high dosage where the strong repulsion between particles occurs, the enmeshment ruled by reaction-limited aggregation (RLA) results in larger sweep flocs as well as higher fractal dimensional structure. For coagulation by PACl-E at alkaline pH and low dosage, the flocs were coagulated predominately by electrostatic patch with Al13 aggregates. At such condition, it is likely that diffusion-limited aggregation (DLA) predominately rule PACl-E coagulation. The fractal dimension (Ds) values of PACl and PACl-E flocs formed at enmeshment and electrostatic patch increased with dosage, respectively. When breakage of flocs occurs, the breakage rate of PACl-E flocs is slower than that of sweep flocs. By WSEM imaging, the adsorption of spherical Al precipitates onto the particles was observed to form sweep flocs with a rough and ragged contour, while the PACl-E flocs were formed with a smooth and glossy structure.  相似文献   

10.
逆流共聚气浮水处理工艺研究   总被引:3,自引:0,他引:3  
逆流共聚气浮水处理工艺相对于传统的气浮,沉淀处理工艺有很大的优越性,一方面絮凝过程在逆流共聚气浮反应柱中进行,溶气回流水释放的微气泡参与到悬浮颗粒物的絮凝反应中而有助于形成体积重量小而结构牢固的絮体;另一方面反应柱中的微絮体在气泡的生成过程中充当了“核”的作用,有助于溶气水中气泡的迅速并提高气泡与絮体的碰撞粘附效率,同时反应柱中可形成稳定的气泡-絮体共聚悬浮层,有利于拦截随水流下行的絮体与上升的微气泡,提高了处理效率。  相似文献   

11.
《Water research》1996,30(5):1049-1056
The flocculation of polystyrene particles in a stirred tank was studied at various shear rates (63–129 s−1) and aluminum sulfate, Al2(SO4)3 16H2O, flocculant concentrations. The competition between coagulation and fragmentation during shear-induced flocculation determined the equilibrium or steady state particle (floc) structure and size distribution. The evolution of the floc structure with time was monitored by image analysis of digitized floc images. The average floc structure became less open or irregular as the floc size distribution attained steady state as a result of shear-induced breakage/restructuring. At high alum (flocculant) concentrations, the steady state floc size distribution appeared to be self-preserving with respect to shear rate. In contrast, at lower flocculant concentrations, the steady state floc size distribution narrowed with increasing shear rate as the large tail of the distribution was pushed to smaller particle sizes by shear-induced fragmentation.  相似文献   

12.
The aggregation behavior of activated sludge flocs was investigated by monitoring the size distribution of flocs and transfer of mineral particles between flocs, under various conditions of agitation and dilution. The results showed that (i) the shape of the floc size distribution can be fitted with a gamma function, (ii) a steady-state mean floc size is reached for a given stirring rate, (iii) this stable floc size is shifted towards floc growth as sludge concentration is increased, (iv) under cycled-shear conditions, microbial aggregates break up and re-form in an almost reversible manner, (v) blending of raw sludge and sludge spiked with Aquatal mineral particles results in particle exchange between flocs and (vi) the detailed study of exchange kinetics indicates that some flocs do not participate to the aggregation dynamics. These experimental results suggest that the activated sludge floc size is governed by a flocculation/deflocculation balance, implying an exchange of floc constituents between microbial aggregates.  相似文献   

13.
Three polyferric-cationic polymer dual-coagulants were comparatively evaluated in terms of coagulation behavior and floc structure characteristic in the coagulation of humic acid (HA) solution. The first dual-coagulant, PFC-PDADMAC, was prepared by premixing of polyferric chloride (PFC) and polydiallyldimethylammonium (PDADMAC) before dosing. The other two were achieved by dosing PFC and PDADMAC in different order. For the given neutral condition, all three dual-coagulants gave similar HA removal before reaching optimal dosage. The strongest charge neutralization and narrowest effective coagulation dosage range were obtained when PFC was dosed firstly. While the weakest charge neutralization and the broadest effective coagulation dosage were obtained when PDADMAC was used as the primary coagulant. The HA removal of all three dual-coagulants was slightly pH dependent for optimum coagulant doses. Fe(III) hydrolysis species distributions of the dual-coagulants in coagulation process were measured by ferron method. PFC-PDADMAC gave the highest content of active Fe(III) coagulating species which is responsible for the coagulation performance of ferric coagulant. The evolution of floc size and floc fractal dimension (Df) in coagulation process was measured under optimum dose and neutral condition by laser diffraction instrument and small-angle laser light scattering (SALLS), respectively. All three dual-coagulants gave similar final floc size but different floc growth rate and floc structure. Both the growth rate and Df were in the same order: PFC dosed firstly > PDADMAC dosed firstly > PFC-PDADMAC.  相似文献   

14.
The performance of the multi-stage complete mixing flow flocculator was investigated using the authors' model in which the flocculation process was divided into two categories. One is the floc growth process which creates settlable flocs. Another is the adsorptive decrease of micro-flocs by the above flocs.The combination of these two processes enable an evaluation of the percentage removal of the raw water suspension in a sedimentation tank and filter with respect to various combinations of detertion time, agitation intensity and the compartment number of the flocculator, physical characteristics of flocs and overflow rate of the sedimentation basin.  相似文献   

15.
The formation, breakage and re-growth of flocs were investigated using alum and polyDADMAC to explore the reversibility of floc breakage. There is a significant reversibility of the breakage process, i.e. the broken flocs can re-grow to the size before breakage, when charge neutralization dominates the coagulation mechanism. However, for higher alum dosage, the break-up process displayed a distinct irreversibility. When coagulated in charge neutralization, the re-growth process of alum was nearly the same as that of polyDADMAC. The average size, coagulation rate and fractal dimension of flocs before and after breakage were nearly the same, including alum and polyDADMAC. While at higher alum dosage, the average size, coagulation rate and fractal dimension of flocs after breakage were much lower than that before breakage. Most important is that the number of small flocs after breakage and re-growth was much less than before breakage when charge neutralization dominated the coagulation mechanism. On the contrary, at higher alum dosage, the small flocs, after breakage and re-growth, increased. The fractal dimension of flocs with alum increased as coagulation time increased until a limiting floc size was reached, while for higher alum dosage, it decreased, whether before or after breakage. The determining parameter for floc re-growth is probably not the fractal dimension, but rather the chemical characteristics of the flocs surface.  相似文献   

16.
Yang Z  Yuan B  Huang X  Zhou J  Cai J  Yang H  Li A  Cheng R 《Water research》2012,46(1):107-114
In the present work, a novel amphoteric chemically bonded composite flocculant (carboxymethyl chitosan-graft-polyacrylamide, denoted as CMC-g-PAM) was successfully prepared and used to flocculate the kaolin suspension. The flocculation performance of CMC-g-PAM in acidic, neutral, and alkaline conditions was systematically evaluated by light scattering in combination with fractal theory, as well as by traditional turbidity and zeta potential measurements. Based on the experimental facts from in situ size and fractal dimension measurements, different flocculation mechanisms play key roles at various pH levels, resulting in substantially varied flocculation kinetic processes under three pH conditions. In acidic condition, patching was the main mechanism involved in the opposite zeta potential between CMC-g-PAM and the kaolin suspension. A flat configuration was favored when the polymeric flocculant was adsorbed onto the particle surface, leading to a slower initial floc growth rate but larger and denser flocs. Bridging was the dominant mechanism in neutral and alkaline conditions. A faster initial rate of bridging resulted in smaller and more open floc structures. A rearrangement process in neutral pH subsequently led to more compact flocs, whereas no restructuration of flocs occurred in alkaline conditions because of the electrostatic repulsion of the same negative charges on the flocculant and particles.  相似文献   

17.
He W  Nan J  Li H  Li S 《Water research》2012,46(2):509-520
A series of flocculation tests were performed to investigate the effect of low-shear rates (G = 3-16 s−1) on flocculation of kaolin suspension by polyaluminum chloride (PACl), with the goal of understanding floc growth mechanisms. Results were reported in terms of floc average size (dp) and boundary fractal dimension (Dpf), derived from a non-intrusive optical sampling and digital image analysis technique. As expected, the rate of floc aggregation increased with increasing G, resulting in faster changes in aggregate size and structure in the initial stage of flocculation. Nevertheless, steady state was attained faster for Dpf than for dp at the same shear rates, possibly due to the self-similarity of fractal aggregates. An interesting finding was that at G = 3 s−1, an obvious plateau was observed for the average-size evolution at steady state; for shear rates of 6 and 7 s−1, the flocs exhibited some decrease after reaching the peak of size, mainly as a result of floc settling at steady state; and for G = 11-16 s−1, a decrease in floc size was possibly attributed to the irreversibility of PACl-floc breakage. The process of floc growth was described using a fractal growth model, which defined flocculation as the result of the combined processes of aggregation and restructuring. The conceptual model could effectively characterize temporal changes in floc size and structure, and found that fragmentation followed by reformation seemed to be more effective in forming larger and more compact aggregates than the restructuring process due to erosion and reformation, which may provide useful insights for the design of flocculation reactors.  相似文献   

18.
A novel method for on-line evaluation of floc size in coagulation process   总被引:1,自引:0,他引:1  
Cheng WP  Kao YP  Yu RF 《Water research》2008,42(10-11):2691-2697
Chemical coagulation is a simple and widely used water treatment process. A jar test based on the residual turbidity in the treated water was used to evaluate the optimal conditions for floc formation. However, the final residual turbidity does not show up variation of turbidity and floc formation during the flocculation process. Hence, a nephelometric turbidimeter method based on on-line monitoring was devised to determine the floc size variance during flocculation. A nephelometric turbidimeter coupled with a data acquisition unit was used to measure turbidity every second at 3 cm below the water surface during the coagulation process. Laboratory results indicated that this new instrument was capable of recording floc agglomeration during slow mixing very accurately. The standard deviation (SD) of the measured turbidity was proportional to the square root of the floc size; a greater SD indicated larger floc sizes. Hence, in addition to monitoring turbidity, the nephelometric turbidity meter is also a valuable tool to study the floc agglomeration process and variations in the resulting floc size. This method is simple and effective; it contributes significantly to the selection of coagulant and optimal flocculation conditions to improve water treatment.  相似文献   

19.
在含表面活性剂十二烷基硫酸钠(SDS)的低浊(6 NTU)高岭土原水中,投加纳米SiO_2进行动态混凝与静沉试验,借助图像分析技术与定量控制参数,探讨了纳米SiO_2的作用效果与形态学特性.结果表明:絮体的形成与生长具有分形特征,分形结构是影响颗粒混凝、絮团密实度与沉降特性的主要因素;SDS的存在对絮凝初期絮体的形成起阻碍作用,随后SDS与混凝剂的混合体共同对粒子作用,促进絮凝,絮体变大且密实,沉降性能改善;SDS和SiO_2对高岭土粒子存在竞争吸附;单独投加纳米SiO_2时形成的絮体小而脆弱,而以纳米SiO_2为助凝剂能促使PAC絮体结构向更密实的构型转变,对浊度和SDS的去除率提高.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号