首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Wang J  Huang CP  Allen HE 《Water research》2003,37(20):4835-4842
The uptake of the seven heavy metal ions Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) by sludge particulates in single-metal systems was investigated. Results showed that under acidic and neutral pH conditions, the uptake of all heavy metals by sludge particulates increases with the increase of pH. However, in the alkaline pH region, the uptake of Cu(II), Ni(II), and Co(II) decreases with the increase of pH, primarily due to the high dissolved organic matter (DOM) concentration in high pH conditions. Based on chemical reactions among heavy metal, sludge solids, and DOM, a mathematical model describing metal uptake as functions of DOM and pH was developed. The stability constants of metal–sludge and metal–DOM complexes can be determined using this model in conjunction with experimental metal uptake data. Results showed that, for the secondary sludge sample collected from Baltimore Back River Wastewater Treatment plant on March 1997, the stability constants of Cu(II)–sludge complex (log KS) and Cu(II)–DOM complex (log KL) are 5.3±0.2 and 4.7±0.3, respectively; for Ni(II), they are 4.0±0.2 and 3.9±0.2, respectively. Results also showed that under neutral and low pH conditions (pH<8), the DOM effects on metal uptake for all heavy metals are insignificant. Therefore, the DOM term in the model can be ignored. Results showed that, for the secondary sludge sample collected from Baltimore Back River Wastewater Treatment plant on December 1996, the estimated log KS values of metal–sludge complexes for Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) are, respectively, 3.6±0.2, 3.0±0.1, 5.5±0.1, 4.8±0.1, 3.1±0.1, 5.1±0.1, and 4.4±0.3.  相似文献   

2.
Fluorescence Excitation-Emission Matrix spectroscopy combined with parallel factor analysis was employed to monitor water quality and organic contamination in swimming pools. The fluorescence signal of the swimming pool organic matter was low but increased slightly through the day. The analysis revealed that the organic matter fluorescence was characterised by five different components, one of which was unique to swimming pool organic matter and one which was specific to organic contamination. The latter component had emission peaks at 420 nm and was found to be a sensitive indicator of organic loading in swimming pool water. The fluorescence at 420 nm gradually increased during opening hours and represented material accumulating through the day.  相似文献   

3.
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.  相似文献   

4.
Lake Kinneret (Sea of Galilee) is one of the major water resources in Israel. The origin and characteristics of natural organic matter (NOM) in the lake and its tributary rivers were studied using fluorescence excitation emission matrices (EEM) and parallel factor analysis. Two humic-like and one proteinous components were sufficient to describe EEM variability among 167 water samples collected between 2/2005 and 9/2006. The two humic-like components showed different relations in lake and riverine samples. Their vertical distribution in the lake was affected by seasonal stratification and distance from water surface, presumably reflecting the release of humic-like matter from sediments, its production via NOM transformation in the bottom layers, and its photodegradation in the upper layers. Vertical distribution of the proteinous component, indicating biological activity at upper water layers, did not correlate with that of the humic-like components. Dissolved organic carbon concentrations did not show any vertical stratification, emphasizing the power of EEM to explore NOM dynamics.  相似文献   

5.
Øygard JK  Måge A  Gjengedal E 《Water research》2004,38(12):2851-2858
A worst-case simulation of the mass-balance for metals in the waste deposited during 1 year and the levels of cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr) and iron (Fe) in the leachate was calculated for four sanitary landfills in Western Norway. Estimates of the levels of metal content in mixed municipal solid waste (MSW) were found by using recent literature values calculated in a mass-balance study at a Norwegian waste incinerator plant. Leachate from the landfills were sampled and analyzed monthly during 1 year, and from these measurements the total annual discharge of the selected metals through the leachate was determined. The levels of the measured heavy metals in the leachate were low. For Cd less than 0.06%, for Pb less than 0.01% and for Hg less than 0.02% of the estimated year's deposited mass of metals were leached from the landfills during the year of investigation. The high retention of these metals are most likely due to sulfide precipitation, but also due to the immobile condition of the metals in their original deposited solid state (plastics, ceramics, etc.). The percentage of Cr leached was relatively higher, but less than 1.0% per year. The mass balance of Fe suggests that this element is more mobile under the prevailing conditions. The percentage of Fe leached varied and was estimated to be between 1.9% and 18%. The present study clearly supports the theory that MSW only to a small extent will lead to discharge of metals if deposited at well-constructed sanitary landfills with top layers.  相似文献   

6.
Zhang Y  Yin Y  Feng L  Zhu G  Shi Z  Liu X  Zhang Y 《Water research》2011,45(16):5110-5122
Chromophoric dissolved organic matter (CDOM) is an important optically active substance that transports nutrients, heavy metals, and other pollutants from terrestrial to aquatic systems and is used as a measure of water quality. To investigate how the source and composition of CDOM changes in both space and time, we used chemical, spectroscopic, and fluorescence analyses to characterize CDOM in Lake Tianmuhu (a drinking water source) and its catchment in China. Parallel factor analysis (PARAFAC) identified three individual fluorophore moieties that were attributed to humic-like and protein-like materials in 224 water samples collected between December 2008 and September 2009. The upstream rivers contained significantly higher concentrations of CDOM than did the lake water (a(350) of 4.27 ± 2.51 and 2.32 ± 0.59 m−1, respectively), indicating that the rivers carried a substantial load of organic matter to the lake. Of the three main rivers that flow into Lake Tianmuhu, the Pingqiao River brought in the most CDOM from the catchment to the lake. CDOM absorption and the microbial and terrestrial humic-like components, but not the protein-like component, were significantly higher in the wet season than in other seasons, indicating that the frequency of rainfall and runoff could significantly impact the quantity and quality of CDOM collected from the catchment. The different relationships between the maximum fluorescence intensities of the three PARAFAC components, CDOM absorption, and chemical oxygen demand (COD) concentration in riverine and lake water indicated the difference in the composition of CDOM between Lake Tianmuhu and the rivers that feed it. This study demonstrates the utility of combining excitation-emission matrix fluorescence and PARAFAC to study CDOM dynamics in inland waters.  相似文献   

7.
Swietlik J  Sikorska E 《Water research》2004,38(17):3791-3799
The composition of natural organic matter (NOM) fractions before and after the reaction with chlorine dioxide as well as ozone was studied by means of total luminescence spectroscopy (TLS) and synchronous scanning fluorescence measurements. The excitation-emission matrices spectra (EEMs) of natural as well as oxidised NOM fractions revealed two well-resolved bands with maxima at Ex/Em of 250-265/422-452 nm and at Ex/Em 300-336/414-446 nm ascribed to humic and fulvic material. The study of emission and synchronous spectra also confirmed the presence of protein-like constituents in all examined NOM fractions. The study of EEMs proved, that oxidation of all NOM fractions with ClO(2) caused mainly the break-up of molecules into smaller fragments and a decrease of the aromaticity. Changes in EEMs after the oxidation of individual NOM fractions with O(3) confirmed the formation of a significant amount of ozonation by-products, i.e. carboxylic acids, aldehydes and ketones during the oxidation process. In addition, the fluorescence studies confirmed relatively high reactivity of all NOM fractions with ClO(2) as well as with ozone.  相似文献   

8.
Anthropogenic activities have dramatically changed the loads and compositions of dissolved organic matter (DOM) in urbanized streams. In this study, the spatial and temporal variations of DOM in the anthropogenically impacted Zhujiang River were investigated by analyzing the water samples in an upstream, urbanized area and downstream of the rivers on different days of one year. The results indicated that the levels of dissolved organic carbon (DOC) and total phosphorus (TP) were unaffected by seasonal changes, but the specific UV254 absorbance (SUVA) values and the total nitrogen (TN) content were greater in the winter than those in the summer. Parallel factor (PARAFAC) analysis of the excitation emission matrices (EEM) revealed the presence of three anthropogenically derived components [tryptophan-like (C1) and tyrosine-like proteins (C3) and anthropogenic humic substances (C5)] in the urbanized rivers, and they had greater seasonal and spatial variability than the terrestrial and microbial humic substances (C2 and C4). Cluster analysis revealed that treated wastewater was an important source of DOM in the urbanized streams. Photodegradation experiments indicated that the DOM in the populous area of the rivers had greater photodegradation potentials than that in the downstream region or in the natural waters. Interestingly, that the anthropogenic humic substances (C5) were considerably more photoreactive than the other four PARAFAC components, which exhibited a decrease of 80% after exposure to sunlight for 0.5 d. This study suggests that the treated wastewater could be an important input to the DOM in the urbanized rivers and the naturally occurring photodegradation could help in eliminating the anthropogenic DOM during their transport.  相似文献   

9.
From analysis of spectrophotometric properties of dissolved organic matter (OM) and the hydrochemical responses of some karst springs under different hydrologic conditions, an assessment of the origin and transfer pathway of OM present in karst spring waters, from soil and epikarst toward the spring, has been conducted for three karst aquifers in southern Spain: Alta Cadena, Sierra de Enmedio and Los Tajos. Intrinsic fluorescence (excitation-emission matrices or EEMs), together with major water chemistry (electrical conductivity, temperature, alkalinity, Cl, Mg+ 2) and PCO2 along with natural hydrochemical tracers (TOC and NO3), have been monitored in 19 springs which drain the three karst aquifers examined in this study. The spring water EEM spectra indicate that fulvic acid-like substances, produced in the soil as a consequence of the decomposition of OM, are the dominant fluorophores, although some of the OM appears to originate from in situ microbiological activity but could be indicative of contamination present in recharge waters from livestock. During each recharge event, TOC and NO3 concentrations increased and variations in fluorescence intensities of peaks attributed to fulvic acid-like compounds were observed. In areas with minimal soil development, spatial and temporal variations in the fluorescence intensity of fulvic acid-like substances and other fluorophores derived from microbiological activity, together with other hydrochemical parameters, provide insights into the hydrogeological functioning of karst aquifers and the infiltration velocity of water from soil and facilitate assessment of contamination vulnerability in these aquifers.  相似文献   

10.
Effluent organic matter (EfOM) from activated sludge systems is composed primarily of influent refractory compounds, residual degradable substrate, intermediate products and soluble microbial products (SMPs). Depending on operational conditions (hydraulic and sludge retention time (SRT)), the quantity and quality of EfOM significantly changes. The main objective of this research was to quantify and characterize the EfOM of a lab-scale activated sludge sequencing batch reactor (SBR), which was operated at three SRTs and fed glucose, an easily biodegradable substrate. EfOM was followed with two direct-quantification methods (chemical oxygen demand (COD) and dissolved organic carbon (DOC)), three spectrometric methods (ultraviolet absorbance at 254 nm (UVA254), excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)) and three organic matter (OM) indices (specific UVA254 (SUVA), SUVA-COD, COD/DOC ratio). The significant increment of UVA254 and OM indices after treatment indicated an accumulation of refractory high-molecular-weight humic-like compounds in the EfOM, which demonstrated that EfOM was composed mainly by SMPs and not glucose. On the other hand, as the SRT increased, the amount of EfOM decreased, but SUVA, SUVA-COD and fluorescence intensity increased; these trends indicated the accumulation of SMPs of increased molecular weight and aromaticity. Increasing SRT in the SBRs reduced the amount of EfOM, but increased its aromaticity and reactivity. Visual analysis of EfOM EEMs showed two protein- and one humic-like peak, which were attributed to SMPs generated within the SBRs. PARAFAC determined that a two-component model best represented EfOM EEMs. The two-components from PARAFAC were mathematically correlated to the visually identified protein- and humic-like SMPs peaks.  相似文献   

11.
An increasing attention has been paid to the trace endocrine disrupting compounds (EDCs) in landfill leachate. In this paper, the removal of EDCs including phthalic acid esters (PAEs) and bisphenol A (BPA) from the fresh and mature landfill leachate by Fenton treatment was studied. More than 40% of PAEs and about 62% of BPA were removed from the raw mature leachate while only 20% of PAEs and 37% of BPA in the raw fresh leachate were reduced, respectively. After the fresh and mature leachates were spiked with PAEs to 1.5 mg L− 1 and BPA to 0.08 mg L− 1, the removal efficiencies of BPA and PAEs increased to more than 88%. The results indicated that the removing efficiencies of the EDCs in the leachate had a relationship with their concentrations, and that the trace levels of EDCs in leachate challenged the treatment capacity of the Fenton process. Most of the EDCs in the enriched leachate were removed by oxidation, which had no clear correlation with the hydrophobicity of the EDCs. The flocculation played an important role in the removal of di-(2-ethylhexyl) phthalate that could not be completely oxidized in the Fenton process, in that the EDCs with high n-octanol/water partition coefficient inclined to precipitate after the Fenton process. The dissolved organic matter (DOM) in the fresh leachate inhibited the EDCs removal more than the DOM in the mature leachate did. Both the composition of the leachate DOM and the characteristics of the EDCs determined the removing efficiencies of the EDCs in the Fenton process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号