首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Acid-mine drainage (AMD) input to a stream typically results in the stream having a reduced pH, increased concentrations of metals and salts, and decreased biological productivity. Removal and/or treatment of these AMD sources is desired to return the impacted stream(s) to initial conditions, or at least to conditions suitable for restoration of the aquatic ecosystem. Some expected changes in the water chemistry of the stream following removal of AMD input include an increase in pH, a decrease in ionic strength, and an increase in dissolved organic carbon (DOC) concentrations from increased biological activity in the absence of toxic metals concentrations. These changes in water chemistry may cause the existing contaminated bed sediments to become a source of metals to the stream water. Streambed sediments, collected from North Fork Clear Creek (NFCC), Colorado, currently impacted by AMD, were assessed for the effects of pH, ionic strength, DOC concentration, time, and particle size on metals release using a factorial design. The design included two levels for each chemical parameter (ionic strength = 40 and 80% lower than ambient; pH = 6 and 8; and DOC = 1 and 3 mg/l higher than ambient), ten sampling times (from zero to 48 h), and two size fractions of sediments (63 μm ≤ x < 2 mm and <63 μm). Greater concentrations of metals were released from the smaller sized sediments compared with the larger, with the exception of Cu. A mild acid digestion (0.6 M HCl) evaluated the amount of each metal that could be removed easily from each of the sediment size fractions. Release of all metals over all time points, treatments, and from both sediment sizes was less than 1% of the extractable concentrations, with the exception of Mn, which ranged from 4 to 7% from the smaller sized sediment. Greater percentages of the 0.6 M HCl-extractable concentrations of Cu, Fe, and Zn were released from the larger sized sediment, while this was true for release of Cd and Mn from the smaller sized sediment. Thus, at least for Cd and Mn, the observed higher concentrations released from the smaller sized sediment with each treatment solution is not simply a function of these particles having higher concentrations available for release, but that these metals also are more readily released from the smaller sediment particles versus the larger. DOC concentration strongly influenced the release of Cu; ionic strength strongly influenced the release of Cd, Mn, and Zn; and interaction effects were observed with the release of Cu, Mn, and Zn from the larger size fraction and with the release of Zn from the smaller size fraction. Overall, results suggest that the expected changes in water chemistry following removal/treatment of the AMD sources would result in a release of metals from the existing sediments, with a greater effect on the release of Cu and Fe, than on the release of Cd, Mn, and Zn.  相似文献   

2.
North Fork Clear Creek (NFCC) receives acid-mine drainage (AMD) from multiple abandoned mines in the Clear Creek Watershed. Point sources of AMD originate in the Black Hawk/Central City region of the stream. Water chemistry also is influenced by several non-point sources of AMD, and a wastewater treatment plant (WWTP). In-stream conditions immediately downstream from point-source inputs result in a visual and rapid precipitation of hydrous iron oxides (HFO). Hydrous manganese oxides (HMO) are seen to coat rocks further downstream during some seasons. Synoptic spatial sampling was used to assess the fate and transport of Cu, Fe, Mn, and Zn during different years and hydrological seasons. Visual-MINTEQ was used to compare observed and model-calculated percentage particulate Cu and Zn as influenced by sorption to both HFO and HMO and aqueous complexation with dissolved organic carbon (DOC). Over distance, Cu and Fe were transported predominantly in the particulate phase, Mn in the dissolved phase, and Zn was intermediate in its distribution, with generally about 50% being in each phase. Under higher flows, a larger fraction of the total metals was present in the dissolved phase, along with a lower total suspended sediment (TSS) concentration. This is consistent with the source of TSS being predominantly in-stream precipitation of metals, which might be kinetically limited under higher flows. Modeling results most closely represented observed percentage particulate Cu under lower flows; a strong seasonal trend was not evident for Zn. Model over-predictions of percentage particulate Cu suggest non-equilibrium with sorbent phases or that something in addition to DOC was keeping a portion of the Cu in solution; under-predictions for Zn suggest an additional sorbent. Differences between observed and modeled particulate varied significantly between sites and seasons; ranging from 1 to 54% for Cu and 1 to 34% for Zn overall.  相似文献   

3.
Butler BA  Ranville JF  Ross PE 《Water research》2008,42(12):3135-3145
North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand, significantly reduced the positive bias between observed and predicted percentage particulate Cu, while inclusion of hydrous manganese oxide (HMO) yielded model results more representative of the observed percentage particulate Zn. These results indicate that there is validity in the use of an existing model, without alteration and with typically collected water chemistry data, to describe complex natural systems, but that processes considered optimal for one metal might not be applicable for all metals in a given water sample.  相似文献   

4.
In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33-90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.  相似文献   

5.
Samples of Severn Estuary (U.K.) inter-tidal sediments were fractionated into a range of particle sizes. The heavy metal concentrations in the non-residual portion (acid leach) of the sediment increased with decreasing particle size. However, the general trend was upset by a large proportion of coal particles from the adjacent S. Wales coalfield, within one specific fraction causing an enhanced heavy metal concentration. There were significant (99% confidence level) correlations between the amount of less than 20 μm material in the sediment and the concentration of Fe, Pb, Cu and Mn; lower, but still significant correlations (95% confidence level) were found for Zn, Cd, Ni and Cr. No significant correlation was found for Co. The ratio of heavy metal associated with the less than 20-μm fraction of the sediment to the metal associated with the unfractionated sediment increased for Cu, Pb, Cd and Zn in the lower part of the estuary.  相似文献   

6.
Boreholes (50 m depth) and piezometers (50 m depth) were drilled and installed for collecting As-rich sediments and groundwater in the Ganges, Brahmaputra, and Meghna flood plains for geochemical analyses. Forty-one groundwater samples were collected from the three areas for the analyses of cations (Ca2+, Mg2+, K+, Na+), anions (Cl, NO3, SO42−), total organic carbon (TOC), and trace elements (As, Mn, Fe, Sr, Se, Ni, Co, Cu, Mo, Sb, Pb). X-ray powder diffraction (XRD) and X-ray fluorescence (XRF) were performed to characterize the major mineral and chemical contents of aquifer sediments. In all three study areas, results of XRF analysis clearly show that fine-grained sediments contain higher amounts of trace element because of their high surface area for adsorption. Relative fluorescent intensity of humic substances in groundwater samples ranges from 30 to 102 (mean 58 ± 20, n = 20), 54-195 (mean 105 ± 48, n = 10), and 27-243 (mean 79 ± 71, n = 11) in the Ganges, Brahmaputra and Meghna flood plains, respectively. Arsenic concentration in groundwater (20-50 m of depth) ranges from 3 to 315 μg/L (mean 62.4 ± 93.1 μg/L, n = 20), 16.4-73.7 μg/L (mean 28.5 ± 22.4 μg/L, n = 10) and 4.6-215.4 μg/L (mean 30.7 ± 62.1 μg/L, n = 11) in the Ganges, Brahmaputra and Meghna flood plains, respectively. Specific ultra violet adsorption (SUVA) values (less than 3 m−1 mg−1 L) indicate that the groundwater in the Ganges flood plain has relatively low percentage of aromatic organic carbon compared to those in the Brahmaputra and Meghna flood plains. Arsenic content in sediments ranges from 1 to 11 mg/kg (mean 3.5 ± 2.7 mg/kg, n = 17) in the three flood plains. Total organic carbon content is 0.5-3.7 g/kg (mean 1.9 ± 1.1 g/kg) in the Ganges flood plain, 0.5-2.1 g/kg (mean: 1.1 ± 0.7 g/kg) in the Brahmaputra flood plain and 0.3-4.4 g/kg (mean 1.9 ± 1.9 g/kg) in the Meghna flood plain. Arsenic is positively correlated with TOC (R2 = 0.50, 0.87, and 0.85) in sediments from the three areas. Fourier transform infrared (FT-IR) analysis of the sediments revealed that the functional groups of humic substances in three areas include amines, phenol, alkanes, and aromatic carbon. Arsenic and Fe speciation in sediments were determined using XANES and the results imply that As(V) and Fe(III) are the dominant species in most sediments. The results also imply that As (V) and Fe (III) in most of the sediment samples of the three areas are the dominant species. X-ray absorption fine structure (EXAFS) analysis shows that FeOOH is the main carrier of As in the sediments of three areas. In sediments, As is well correlated with Fe and Mn. However, there is no such correlation observed between As and Fe as well as As and Mn in groundwater, implying that mobilizations of Fe, Mn, and As are decoupled or their concentrations in groundwater have been affected by other geochemical processes following reductive dissolution of Fe or Mn-hydroxides. For example, dissolved Fe and Mn levels may be affected by precipitation of Fe- and Mn-carbonate minerals such as siderite, while liberated As remains in groundwater. The groundwaters of the Brahmaputra and Meghna flood plains contain higher humic substances in relative fluorescence intensity (or fluorescence index) and lower redox potential compared to the groundwater of Ganges flood plain. This leads to the release of arsenic and iron to groundwater of these three plains in considerable amounts, but their concentrations are distributed in spatial variations.  相似文献   

7.
The total concentrations and chemical partitioning of heavy metals in streambed sediments, collected around the Jaintia Hills coal deposit of northeast India, were studied using pollution indices and multivariate techniques to evaluate the risk and contamination levels from heavy metals and their possible origins. Results show that sediments close to mining sites have low pH (<4), high organic carbon, and contain significant amounts of Fe-oxyhydroxide phases (mainly, goethite and schwertmannite), which implies direct impact of coal mine drainage. The average concentrations of Fe, Cu, Co, Cd, Cr, and Zn exceeded the World average, and in some cases, Cd, Cu, Ni, and Cr concentrations exceeded the threshold effects level, which suggests they will be toxic to aquatic biota. Contamination factors (CF) show that the sediments are low to highly contaminated with Cd, Cu, Mn, Pb, Fe, and Zn and low to moderately contaminated with Co, Cr and Ni. The pollution load index (PLI), degree of contamination index (C deg) and Nemerow integrated pollution index (NIPI) show that the sediments are moderately to highly contaminated, with the extent of pollution greatest nearest to the collieries. The potential ecological risk index (RI) shows low to considerable ecological risk from heavy metals in the sediments, with Cd having the high potential of risk, which also agrees with the risk assessment code (RAC). Multivariate statistical analysis suggests that the concentrations of the heavy metals in stream sediments are strongly influenced by Fe-oxyhydroxide phases and organic carbon derived from anthropogenic sources, mainly coal mining activities. Although a significant proportion of the Cd, Mn, and Ni in the sediments are partitioned into exchangeable and organic fractions, a sizable amount of metals are also found in the Fe–Mn fraction, suggesting that Fe-oxyhydroxides play a dominant role in controlling metal mobility in these stream sediments.  相似文献   

8.
To obtain information on the fate of trace metals discharged to an estuarine environment, analyses have been made on water and sediment samples from Back River, MD., and on effluent from the large wastewater treatment plant that discharges there. Within 2–3 km of the outfall, the concentration (in μg 1−1) of all metals decreases as follows: Mn, > 120-90; Fe, > 570-300; Cu, 53-7; Zn, 280-9; Cd, 3.5-0.5 and Pb, 31-<4. Except possibly for Mn and Fe, these decreases are much greater than can be ascribed to simple dilution, so physical, chemical or biological processes must be removing metals to the sediments. Correspondingly, sediment concentrations of Cu, Zn, Cd and Pb are approximately one order of magnitude higher than normally found in uncontaminated areas. After the initial decrease, concentrations of Mn and Cd in the water begin to rise again, suggesting remobilization from the sediments. Comparison of the estimated annual discharge of 8 trace metals to the Chesapeake Bay from wastewater treatment plants and from rivers suggests that the wastewater input may be within one order of magnitude of the fluvial input for Cr, Cu, Zn, Cd and Pb. Of the metals studied, Cd presents the greatest potential for serious pollution because its input from wastewater probably exceeds fluvial input, it appears to be readily remobilized from sediments, and it is known to be toxic to many organisms.  相似文献   

9.
The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15-25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.  相似文献   

10.
Mobile and bound forms of trace metals in sediments of the lower ganges   总被引:2,自引:0,他引:2  
Mobile and bound trace metals associated with sediment components (viz. exchangeable, carbonate, organic, Fe/Mn oxide and residual fractions) were determined at five locations on the River Ganges in the lower reaches. In the exchangeable phase, 5–22% of Pb, 5–14.4% of Cr, 3–16.4% of Cd, 3–16% of Zn and 1–13.5% of Cu were found, and in the carbonate phase 73–87% of Zn, 38–41% of Cd, 13–27% of Ni and 3–10.1% of Pb were found. The Fe/Mn oxide phase retained about 79–83% of Mn, 30–40% of Cr and Fe, 22–25% of Cu, 14–16% of Ni and 9–11% of Pb. In the organic phase about 36–47% of Cd, 22–28% of Cu and 10–15% of Pb were found. The order of release of metals was Cd > Cr > Pb > Cu > Zn > Ni > Mn > Fe, and the order of adsorption characteristics of most of the mobile metal fractions was Fe/Mn oxide > organic > clay. Correlations of the physico-chemical parameters with adsorption characteristics were also determined and a good correlation (r = 0.7) of cation exchange capacity with the clay fraction was found. Igeo (geoaccumulation indices) of metals in the sediments were also evaluated. Results showed a considerable enrichment of trace metals in the sediment phase at almost all the sites.  相似文献   

11.
Groundwater and core sediments of two boreholes (to a depth of 50 m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10-40 m of depth) range from 2.8 μg L−1 to 462.3 μg L−1. Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55 mg kg−1) were found within the upper 40 m of the drilled core samples. X-ray absorption near-edge structure spectroscopy was employed to elucidate the arsenic speciation of sediments collected from two boreholes. Environmental scanning electron microscopy and transmission X-ray microscopy were used to investigate the characteristics of FeOOH in sediments which adsorb arsenic. In addition, a pH-Eh diagram was drawn using the Geochemist's Workbench (GWB) software to elucidate the arsenic speciation in groundwater. The dominant groundwater type is Ca-HCO3 with high concentrations of As, Fe and Mn but low levels of NO3 and SO42−. Sequential extraction analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Fluorescent intensities of humic substances indicate that both groundwater and sediments in this arsenic hotspot area contain less organic matter compared to other parts of Bengal basin. Statistical analysis clearly shows that As is closely associated with Fe and Mn in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater.  相似文献   

12.
The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide - the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle.  相似文献   

13.
Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular trace elements, have not been investigated. Here, we report the results of column experiments to assess the impacts of temperature variations (5°C, 11°C, 25°C and 60°C) on groundwater quality in anoxic reactive unconsolidated sandy sediments derived from an aquifer system widely used for drinking water production in the Netherlands. Our results showed that at 5 °C no effects on water quality were observed compared to the reference of 11°C (in situ temperature). At 25°C, As concentrations were significantly increased and at 60 °C, significant increases were observed pH and DOC, P, K, Si, As, Mo, V, B, and F concentrations. These elements should therefore be considered for water quality monitoring programs of shallow geothermal energy projects. No consistent temperature effects were observed on Na, Ca, Mg, Sr, Fe, Mn, Al, Ba, Co, Cu, Ni, Pb, Zn, Eu, Ho, Sb, Sc, Yb, Ga, La, and Th concentrations, all of which were present in the sediment. The temperature-induced chemical effects were probably caused by (incongruent) dissolution of silicate minerals (K and Si), desorption from, and potentially reductive dissolution of, iron oxides (As, B, Mo, V, and possibly P and DOC), and mineralisation of sedimentary organic matter (DOC and P).  相似文献   

14.
Kelderman P  Osman AA 《Water research》2007,41(18):4251-4261
Heavy metal binding forms for Cu, Zn and Pb were determined at four representative sediment sites in the canals of Delft (The Netherlands), using selective chemical extraction methods. Small differences (on average <5%) were found between duplicate extraction experiments. The dominant Cu binding form was always related to sulphide and organics in the sediment. Zn was mainly bound to iron+manganese (hydr)oxides, whereas Pb was rather evenly distributed over the different labile and non-labile binding fractions. A gradual (over about 1 month) increase in redox potentials of the anaerobic sediments led to a 7-37% sediment release of the above heavy metals; this could mainly be ascribed to oxidation of the heavy metal-sulphide bindings. Part of the released heavy metals was re-adsorbed by the labile binding phases ("exchangeable" and "carbonate bound"). Contrary to expectations, we found a decrease rather than an increase in the Fe+Mn (hydr)oxide binding forms. This can probably be ascribed to non-equilibrium reactions in the time span of the experiments, as well as side reactions such as complexation with humic acids and hindered precipitation reactions due to organic matter coatings.  相似文献   

15.
Jong T  Parry DL 《Water research》2003,37(14):3379-3389
Mildly acidic metal (Cu, Zn, Ni, Fe, Al and Mg), arsenic and sulfate contaminated waters were treated, over a 14 day period at 25 degrees C, in a bench-scale upflow anaerobic packed bed reactor filled with silica sand and employing a mixed population of sulfate-reducing bacteria (SRB). The activity of SRB increased the water pH from approximately 4.5 to 7.0, and enhanced the removal of sulfate and metals in comparison to controls not inoculated with SRB. Addition of organic substrate and sulfate at loading rates of 7.43 and 3.71 kg d(-1) m(-3), respectively, resulted in >82% reduction in sulfate concentration. The reactor removed more than 97.5% of the initial concentrations of Cu, Zn and Ni, while only >77.5% and >82% of As and Fe were removed, respectively. In contrast, Mg and Al levels remained unchanged during the whole treatment process. The removal patterns for Cu, Zn, Ni and Fe reflected the trend in their solubility for their respective metal sulfides, while As removal appeared to coincide with decreasing Cu, Zn, Ni and Fe concentrations, which suggests adsorption or concomitant precipitation with the other metal sulfides.  相似文献   

16.
Concentrations of Co, Cu, Fe, Hg, Mn, Sb, Se and Zn in IAEA milk (dry) standard A-11 were re-evaluated with the help of instrumental and radiochemical neutron activation analysis (NAA). The results show reasonably good agreement for Co (5.1 ± 0.55 ng/g) and Zn (34 ± 2.5 μg/g), in relation to the recommended values. For Cu (374 ± 15 ng/g), Fe (2.4 ± 0.34 μg/g) and Mn (250 ± 20 ng/g); the results obtained are lower than the reported values.Cu, Mn, and Zn were cross-checked by atomic absorption spectrophotometry (AAS). The results, Cu = 331 ± 27 ng/g, Mn = 302 ± 62 ng/g, and Zn = 35 ± 1 μg/g, fall within the range of mean values obtained by NAA.For Hg and Se, using instrumental NAA, only upper limits could be indicated; because of the low levels of concentrations of Hg and Se on one hand, and high content of P (9100 μg/g) in A-11 milk standard on the other, NAA coupled with radiochemistry is to be preferred for these two elements.In pooled human milk, in addition to Cu and Mn (radiochemical) and Co, Fe, Sb and Zn (instrumental), Hg and Se could also be determined non-destructively because of the favourable Hg/P and Se/P ratios in this matrix.  相似文献   

17.
The concentrations of Cu, Zn, Fe, Mn, Ni, Cd, Pb and Co have been determined in water, bottom sediments, plankton, zoobenthos and ichthyofauna of mesotropic Lake Piaseczno located in eastern Poland. In water, sediments, plankton and benthos the most abundant heavy metals were Fe, Zn and Mn, whereas in fish Zn, Cu, and Mn were most abundant. The amount of heavy metals in the biotic components was dependent upon their concentration in water and partly upon the concentration in bottom sediments. A considerably less important role in the translocation of heavy metals is probably played by trophic interactions.  相似文献   

18.
The EEZ of Qatar is subjected to different landbased sources and marine activities. Twenty-three sediment samples were collected from the EEZ of Qatar, Persian Gulf and analyzed to determine the effect of increasing man-made activities on the structure and chemical composition of seabed. Grain size analysis support the predominance of sand sized sediments with patches of sandy silt at the northeastern and southeastern areas. Coarse grained sand was characterized by elevated carbonate content reaching >95%. Off the capital Doha and opposite to industrial parks, the organic matter reached >7.4%. Cu (0.8-30.3 r w g/g), Pb (2.2-22.6 r w g/g), Co (2.4-9.1 r w g/g) and Mn (36.8-746 r w g/g) levels were high compared to other Gulf values. Stations were clustered on the basis of sediment texture rather than metal accumulation. The high organic content of northeastern sediments, derived from planktonic origin is coupled by low metals concentrations. Except for Cr, Cu and Fe, the non-residual fraction of metals contributed between 56 and 92% of the total metals concentrations. Stations sampled closer to potential metal sources are characterized by increased non-residual fractions. Negligible or very low amount (<5%) of the non-residual fraction of metals appeared in the exchangeable phase. Metals are mostly associated with the easily and moderately reducible fraction (23% Fe, 17% Cr, 24% Co, 34% Mn, 14% Ni and 18% Cu) due to strong scavenging capabilities of Fe-Mn oxides. Pb is partitioned equally among easily/moderately reducible and carbonate fractions, dominating in the latter. Co (38%) and Ni (35%) are mostly associated with organic matter/sulphide phase, while Zn (27-29%) is equally partitioned between easily/moderately reducible, carbonate and organic matter phases. Cr (73%), Cu (62%) and Fe (58%) appeared mainly in the residual form. The concentrations of bioavailable metal fractions (exchangeable and easily/moderately reducible) do not put at risk the economically important living resources.  相似文献   

19.
Characteristics of water profiles and sulphide formation processes in sediments were studied in two water reservoirs affected by acid mine drainage in order to investigate the mechanisms controlling the physical and chemical processes that, under favourable conditions, act to reduce the toxicity, mobility and concentration of metals and metalloids in the water column. Water columns and pore-waters from sediments were analysed for Fe species, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn, Cr), sulphide, sulphate and bicarbonate. Inorganic reduced sulphur compounds (acid volatile sulphur, pyrite sulphur and elemental sulphur) and reactive Fe were determined in the sediments. A sequential extraction was also performed. Both reservoirs behave like holomictic and monomictic lakes, with a summer thermal stratification that disappears during winter. pH values between 4 and 7 can be observed along the water columns. Pore-water concentrations of up to 25 mg/l of Fe, 4 mg/l of Al, 1.3 mg/l of Zn, 170 µg/l of Pb, 11 µg/l of As, etc. have been found. The results suggest that toxic elements such as Cu, Zn, Co, Pb, Cr, As, etc. are mainly found in the bioavailable fraction which is the most hazardous for the environment. The calculated degree of sulphidization (DOS) and degree of pyritization (DOP) values indicates that removal of trace elements from anoxic pore-waters occurs by coprecipitation and/or adsorption on newly formed Fe sulphides (framboidal pyrite), attenuating the contamination. However oxidation of the sediments during turnover periods also occurs, which releases toxic elements back into the water column.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号