首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)   总被引:1,自引:0,他引:1  
This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24 h), initial fluoride concentration (1-100 mg L−1), temperature (10 and 25 °C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mg g−1. The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.  相似文献   

2.
Gupta VK  Gupta B  Rastogi A  Agarwal S  Nayak A 《Water research》2011,45(13):4047-4055
Waste rubber tire has been used for the removal of pesticides from waste water by adsorption phenomenon. By applying successive chemical and thermal treatment, a basically cabonaceous adsorbent is prepared which has not only a higher mesopore, macropore content but also has a favorable surface chemistry. Presence of oxygen functional groups as evidenced by FTIR spectra along with excellent porous and surface properties were the driving force for good adsorption efficiency observed for the studied pesticides: methoxychlor, methyl parathion and atrazine. Batch adsorption studies revealed maximum adsorption of 112.0 mg g−1, 104.9 mg g−1 and 88.9 mg g−1 for methoxychlor, atrazine and methyl parathion respectively occurring at a contact time of 60 min at pH 2 from an initial pesticide concentration of 12 mg/L. These promising results were confirmed by column experiments; thereby establishing the practicality of the developed system. Effect of various operating parameters along with equilibrium, kinetic and thermodynamic studies reveal the efficacy of the adsorbent with a higher adsorption capacity than most other adsorbents. The adsorption equilibrium data obey Langmuir model and the kinetic data were well described by the pseudo-first-order model. Applicability of Bangham’s equation indicates that diffusion of pesticide molecules into pores of the adsorbent mainly controls the adsorption process. Spontaneous, exothermic and random characteristics of the process are confirmed by thermodynamic studies. The developed sorbent is inexpensive in comparison to commercial carbon and has a far better efficiency for pesticide removal than most other adsorbents reported in literature.  相似文献   

3.
The adsorption of arsenic (V) by granular iron hydro(oxides) has been proven to be a reliable technique. However, due to the low mechanical properties of this material, it is difficult to apply it in full scale water treatment. Hence, the aim of this research is to develop a methodology to anchor iron hydro(oxide) nanoparticles onto activated carbon, in which the iron hydro(oxide) nanoparticles will give the activated carbon an elevated active surface area for arsenic adsorption and also help avoid the blockage of the activated carbon pores. Three activated carbons were modified by employing the thermal hydrolysis of iron as the anchorage procedure. The effects of hydrolysis temperature (60-120 °C), hydrolysis time (4-16 h), and FeCl3 concentration (0.4-3 mol Fe/L) were studied by the surface response methodology. The iron content of the modified samples ranged from 0.73 to 5.27%, with the higher end of the range pertaining to the carbons with high oxygen content. The materials containing smaller iron hydro(oxide) particles exhibited an enhanced arsenic adsorption capacity. The best adsorbent material reported an arsenic adsorption capacity of 4.56 mg As/g at 1.5 ppm As at equilibrium and pH 7.  相似文献   

4.
The adsorption capacity of ‘waste’ Fe(III)/Cr(III) hydroxide for removal of quinol at varying agitation time, quinol concentration, adsorbent dose, pH and temperature was investigated by batch method. The Langmuir isotherm was found to represent the equilibrium sorption data well and the adsorption capacity was found to be 24.4 mg g?1 and 28.2 mg g?1 for untreated and pre‐treated adsorbent, respectively. Adsorption followed second‐order kinetics. Adsorption was maximum and uniform in the pH range 4.0–10.0 and 6.0–10.0 for untreated and pre‐treated adsorbent, respectively. The adsorption was endothermic in nature. Application of the adsorbent to the treatment of real effluent was demonstrated.  相似文献   

5.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   

6.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

7.
Awual MR  Jyo A  Ihara T  Seko N  Tamada M  Lim KT 《Water research》2011,45(15):4592-4600
This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h−1 in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5 M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.  相似文献   

8.
We describe a novel combustion synthesis for the preparation of Nanomagnesia (NM) and its application in water purification. The synthesis is based on the self-propagated combustion of the magnesium nitrate trapped in cellulose fibers. Various characterization studies confirmed that NM formed is crystalline with high phase purity, and the particle size varied in the range of 3-7 nm. The fluoride scavenging potential of this material was tested as a function of pH, contact time and adsorbent dose. The result showed that fluoride adsorption by NM is highly favorable and the capacity does not vary in the pH range usually encountered in groundwater. The effects of various co-existing ions usually found in drinking water, on fluoride removal were also investigated. Phosphate was the greatest competitor for fluoride followed by bicarbonate. The presence of other ions studied did not affect the fluoride adsorption capacity of NM significantly. The adsorption kinetics followed pseudo-second-order equation and the equilibrium data are well predicted by Frendlich equation. Our experimental evidence shows that fluoride removal happened through isomorphic substitution of fluoride in brucite. A batch household defluoridation unit was developed using precipitation-sedimentation-filtration techniques, addressing the problems of high fluoride concentration as well as the problem of alkaline pH of the magnesia treated water. The method of synthesis reported here is advantageous from the perspectives of small size of the nanoparticle, cost-effective recovery of the material and improvement in the fluoride adsorption capacity.  相似文献   

9.
Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon   总被引:1,自引:0,他引:1  
Fenton-driven regeneration of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves an Fe amendment step to increase the Fe content and to enhance the extent of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, ferric nitrate, ferrous sulfate) were amended separately to GAC. Following Fe amendment, MTBE was adsorbed to the GAC followed by multiple applications of H2O2. Fe retention in GAC was high (83.8-99.9%) and decreased in the following order, FeSO4·7H2O > Fe2(SO4)3·9H2O > Fe(NO3)3·9H2O > FeCl3. A correlation was established between the post-sorption aqueous MTBE concentrations and Fe on the GAC for all forms of Fe investigated indicating that Fe amendment interfered with MTBE adsorption. However, the mass of MTBE adsorbed to the GAC was minimally affected by Fe loading. Relative to ferric iron amendments to GAC, ferrous iron amendment resulted in lower residual iron in solution, greater Fe immobilization in the GAC, and less interference with MTBE adsorption. MTBE oxidation was Fe limited and no clear trend was established between the counter-ion (SO42−, Cl, NO3) of the ferric Fe amended to GAC and H2O2 reaction, MTBE adsorption, or MTBE oxidation, suggesting these processes are anion independent.  相似文献   

10.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

11.
This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex®1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L−1. A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.  相似文献   

12.
Boreholes (50 m depth) and piezometers (50 m depth) were drilled and installed for collecting As-rich sediments and groundwater in the Ganges, Brahmaputra, and Meghna flood plains for geochemical analyses. Forty-one groundwater samples were collected from the three areas for the analyses of cations (Ca2+, Mg2+, K+, Na+), anions (Cl, NO3, SO42−), total organic carbon (TOC), and trace elements (As, Mn, Fe, Sr, Se, Ni, Co, Cu, Mo, Sb, Pb). X-ray powder diffraction (XRD) and X-ray fluorescence (XRF) were performed to characterize the major mineral and chemical contents of aquifer sediments. In all three study areas, results of XRF analysis clearly show that fine-grained sediments contain higher amounts of trace element because of their high surface area for adsorption. Relative fluorescent intensity of humic substances in groundwater samples ranges from 30 to 102 (mean 58 ± 20, n = 20), 54-195 (mean 105 ± 48, n = 10), and 27-243 (mean 79 ± 71, n = 11) in the Ganges, Brahmaputra and Meghna flood plains, respectively. Arsenic concentration in groundwater (20-50 m of depth) ranges from 3 to 315 μg/L (mean 62.4 ± 93.1 μg/L, n = 20), 16.4-73.7 μg/L (mean 28.5 ± 22.4 μg/L, n = 10) and 4.6-215.4 μg/L (mean 30.7 ± 62.1 μg/L, n = 11) in the Ganges, Brahmaputra and Meghna flood plains, respectively. Specific ultra violet adsorption (SUVA) values (less than 3 m−1 mg−1 L) indicate that the groundwater in the Ganges flood plain has relatively low percentage of aromatic organic carbon compared to those in the Brahmaputra and Meghna flood plains. Arsenic content in sediments ranges from 1 to 11 mg/kg (mean 3.5 ± 2.7 mg/kg, n = 17) in the three flood plains. Total organic carbon content is 0.5-3.7 g/kg (mean 1.9 ± 1.1 g/kg) in the Ganges flood plain, 0.5-2.1 g/kg (mean: 1.1 ± 0.7 g/kg) in the Brahmaputra flood plain and 0.3-4.4 g/kg (mean 1.9 ± 1.9 g/kg) in the Meghna flood plain. Arsenic is positively correlated with TOC (R2 = 0.50, 0.87, and 0.85) in sediments from the three areas. Fourier transform infrared (FT-IR) analysis of the sediments revealed that the functional groups of humic substances in three areas include amines, phenol, alkanes, and aromatic carbon. Arsenic and Fe speciation in sediments were determined using XANES and the results imply that As(V) and Fe(III) are the dominant species in most sediments. The results also imply that As (V) and Fe (III) in most of the sediment samples of the three areas are the dominant species. X-ray absorption fine structure (EXAFS) analysis shows that FeOOH is the main carrier of As in the sediments of three areas. In sediments, As is well correlated with Fe and Mn. However, there is no such correlation observed between As and Fe as well as As and Mn in groundwater, implying that mobilizations of Fe, Mn, and As are decoupled or their concentrations in groundwater have been affected by other geochemical processes following reductive dissolution of Fe or Mn-hydroxides. For example, dissolved Fe and Mn levels may be affected by precipitation of Fe- and Mn-carbonate minerals such as siderite, while liberated As remains in groundwater. The groundwaters of the Brahmaputra and Meghna flood plains contain higher humic substances in relative fluorescence intensity (or fluorescence index) and lower redox potential compared to the groundwater of Ganges flood plain. This leads to the release of arsenic and iron to groundwater of these three plains in considerable amounts, but their concentrations are distributed in spatial variations.  相似文献   

13.
Manganese concentrations in Scottish groundwater   总被引:1,自引:0,他引:1  
Groundwater is increasingly being used for public and private water supplies in Scotland, but there is growing evidence that manganese (Mn) concentrations in many groundwater supplies exceed the national drinking water limit of 0.05 mg l− 1. This study examines the extent and magnitude of high Mn concentrations in groundwater in Scotland and investigates the factors controlling Mn concentrations. A dataset containing 475 high quality groundwater samples was compiled using new data from Baseline Scotland supplemented with additional high quality data where available. Concentrations ranged up to 1.9 mg l− 1; median Mn concentration was 0.013 mg l− 1 with 25th and 75th percentiles 0.0014 and 0.072 mg l− 1 respectively. The Scottish drinking water limit (0.05 mg l− 1) was exceeded for 30% of samples and the WHO health guideline (0.4 mg l− 1) by 9%; concentrations were highest in the Carboniferous sedimentary aquifer in central Scotland, the Devonian sedimentary aquifer of Morayshire, and superficial aquifers. Further analysis using 137 samples from the Devonian aquifers indicated strong redox and pH controls (pH, Eh and dissolved oxygen accounted for 58% of variance in Mn concentrations). In addition, an independent relationship between Fe and Mn was observed, suggesting that Fe behaviour in groundwater may affect Mn solubility. Given the redox status and pH of Scottish groundwaters the most likely explanation is sorption of Mn to Fe oxides, which are released into solution when Fe is reduced.Since the occurrence of elevated Mn concentrations is widespread in groundwaters from all aquifer types, consideration should be given to monitoring Mn more widely in both public and private groundwater supplies in Scotland and by implication elsewhere.  相似文献   

14.
Wei YT  Zheng YM  Chen JP 《Water research》2011,45(6):2290-2296
Methylated arsenic in groundwater has caused a series of health problems to human beings. A N-methylglucamine modified chitosan polymeric adsorbent was successfully developed for efficient adsorption of methylated arsenic from water solution. Adsorption behaviors of two common methylated arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), onto the adsorbent were investigated in this paper. The surface modification increased the adsorption capabilities for the arsenic. The uptake of MMA was higher than that of DMA throughout all pH values. The maximum adsorption capacities were 15.4 mg/g for MMA and 7.1 mg/g for DMA, exhibiting competitive advantages with other reported materials. The affinity of these arsenic species for the adsorbent followed a pattern of MMA > DMA. The adsorption equilibrium was achieved within 20 h. The uptake of MMA and DMA was dependent upon the concentration of background electrolytes, indicating the formation of outer-sphere complexes of both organoarsenic species with the adsorbent during the adsorption. The existence of natural organic matter and competitive anions cause decrease in the uptake of both arsenic species. Furthermore, the simultaneous uptake of organic contaminants such as humic acid was observed. The spectroscopic analysis demonstrated the strong attachment of both organic arsenic species onto the amine functional group of the adsorbent.  相似文献   

15.
Diclofenac (DCF) was eliminated by fast chemical oxidation on natural manganese oxide in a column reactor. Identification of transformation by-products of DCF by HPLC-UV-MSn gave evidence of decarboxylation, iminoquinone formation and dimerization. The fast oxidation of DCF is also accompanied by a strong adsorption of organic carbon that was explained by the sorption of dimer products on the surface of manganese oxide. Decarboxylation and dimerization increased the hydrophobic interactions with manganese oxide and reduced the presence of potentially toxic by-products in the effluent. The rate of oxidation was first order with respect to DCF and was slowed down by the presence of organic buffer MOPS (3-morpholinopropane-1-sulfonic acid). The first order rate constant in absence of MOPS was extrapolated by considering a surface site-binding model and MOPS as a co-adsorbate. The rate constant was 0.818 min−1 at pH 7 and 10 mM NaCl corresponding to empty bed residence time of 50 s only for 50% removal of DCF. Rate constants increased when pH decreased from pH 8.0 to 6.5 and when ionic strength increased. Manganese oxide bed filter can be considered as an alternative treatment for polishing waste water effluent or for remediation of contaminated groundwater.  相似文献   

16.
The kinetics of Se(IV) removal by zero valent iron (ZVI) open to the air as a function of pH and the involved mechanisms were investigated in this study. The specific rate constants of Se(IV) removal by ZVI decreased from 92.87 to 6.87 L h−1 m−2 as pH increased from 4.0 to 7.0. The positive correlation between the removal rate of Se(IV) and the generation rate of Fe(II) and the depression of Se(IV) removal in the presence of 1,10-phenanthroline indicated that both ZVI and adsorbed Fe(II) on ZVI surface contributed to the reductive removal of Se(IV). The soft X-ray STXM measurement confirmed the adsorption of Fe(II) on the surface of ZVI and freshly formed ferric (hydr)oxides. Se(IV) was removed by adsorption followed by reduction to Se(0) on ZVI surface at pH 4.0–7.0, as revealed by XANES spectra. A core-shell structure was observed when ZVI reacted with Se(IV)-containing solution for 3 h at pH 6.0. Se(IV) was reduced to Se(0) and co-precipitated with the freshly formed Fe(III), forming the shell surrounding the iron core. After reaction for 24 h, the generated Se(0) was surrounded by multiple layers of Fe(III) oxides/hydroxides. SEM images and XRD patterns revealed that the corrosion products of ZVI at pH 6.0 transformed from amorphous iron hydroxides to lepidocrocite (γ-FeOOH) as reaction proceeded. The final corrosion products of ZVI contained both lepidocrocite and goethite at pH 5.0 while they were X-ray amorphous at pH 4.0 and 7.0.  相似文献   

17.
The effect of Zn2+ on both the kinetic and equilibrium aspects of arsenic adsorption to magnetite nanoparticles was investigated at pH 4.5-8.0. At pH 8.0, adsorption of both arsenate and arsenite to magnetite nanoparticles was significantly enhanced by the presence of small amount of Zn2+ in the solution. With less than 3 mg/L of Zn2+ added to the arsenic solution prior to the addition of magnetite nanoparticles, the percentage of arsenic removal by magnetite nanoparticles increased from 66% to over 99% for arsenate, and from 80% to 95% for arsenite from an initial concentration of ∼100 μg/L As at pH 8.0. Adsorption rate also increased significantly in the presence of Zn2+. The adsorption-enhancement effect of Zn2+ was not observed at pH 4.5-6.0, nor with ZnO nanoparticles, nor with surface-coated Zn-magnetite nanoparticles. The enhanced arsenic adsorption in the presence of Zn2+ cannot be due to reduced negative charge of the magnetite nanoparticles surface by zinc adsorption. Other cations, such as Ca2+ and Ag+, failed to enhance arsenic adsorption. Several potential mechanisms that could have caused the enhanced adsorption of arsenic have been tested and ruled out. Formation of a ternary surface complex by zinc, arsenic and magnetite nanoparticles is a possible mechanism controlling the observed zinc effect. Zinc-facilitated adsorption provides further advantage for magnetite nanoparticle-enhanced arsenic removal over conventional treatment approaches.

Synopsis

Arsenic adsorption to magnetite nanoparticles at neutral or slightly basic pH can be significantly enhanced with trace amount of Zn2+ due to the formation of a ternary complex.  相似文献   

18.
The efficiency of the adsorption for fluoride by sludge from the treatment of starch industry wastewater was investigated. Batch experiments were conducted in order to determine the parameters that affect the adsorption process. The activation for waste sludge and specific surface area and porosity effects in enhancing the pyrolysis conditions were determined. The adsorption parameters of initial fluoride concentration, pH and adsorbent dosage were investigated with carbonaceous material. As a result of pyrolysis of samples treated with ZnCl2 1196 m2/g, the specific surface area was reached. Correlation coefficient of 0.99 and 12.75 mg/g adsorption capacity and adsorption isotherm model were revealed as convenient. Experimental results show that the adsorption of fluoride waste sludge will be effective in many ways in which the adsorbent is applied.  相似文献   

19.
The impact of LCFA adsorption on the methanogenic activity was evaluated in batch assays for two anaerobic granular sludges in the presence and absence of bentonite as synthetic adsorbent. A clear inhibitory effect at an oleate (C18:1) concentration of 0.5 gC18:1 L−1 was observed for both sludges. Palmitate (C16:0) was confirmed to be the main intermediate of C18:1 degradation in not adapted sludge and its accumulation was further evidenced by fluorescence staining and microscopy techniques. LCFA inhibition could be decreased by the addition of bentonite, reducing the lag-phase and accelerating the kinetics of LCFA degradation, concluding in the importance of the adsorptive nature of the LCFA inhibitory process. Granule morphology and molecular profiling of predominant microorganisms revealed that biomass adaptation to LCFA could modify the intermediates accumulation profiles and process rates.  相似文献   

20.
In this research, the adsorption of two herbicides, alachlor (ALA) and terbuthylazine (TBA), on granular activated carbon (GAC) in the presence of well-characterized peptide fraction of cellular organic matter (COM) produced by cyanobacterium Microcystis aeruginosa was studied. Two commercially available GACs were characterized using nitrogen gas adsorption and surface charge titrations. The COM peptides of molecular weight (MW) < 10 kDa were isolated and characterized using MW fractionation technique and high-performance size exclusion chromatography (HPSEC). The effect of surface charge on the adsorption of COM peptides was studied by means of equilibrium adsorption experiments at pH 5 and pH 8.5. Electrostatic interactions and hydrogen bonding proved to be important mechanisms of COM peptides adsorption. The adsorption of ALA and TBA on granular activated carbon preloaded with COM peptides was influenced by solution pH. The reduction in adsorption was significantly greater at pH 5 compared to pH 8.5, which corresponded to the increased adsorption of COM peptides at pH 5. The majority of the competition between COM peptides and both herbicides was attributed to low molecular weight COM peptides with MW of 700, 900, 1300 and 1700 Da.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号