首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niu Y  Shen H  Chen J  Xie P  Yang X  Tao M  Ma Z  Qi M 《Water research》2011,45(14):4169-4182
PCR-denaturing gradient gel electrophoresis (DGGE) and canonical correspondence analysis (CCA) were used to explore the relationship between succession of phytoplankton community and temporal variation of bacterioplankton community composition (BCC) in the eutrophic Lake Taihu. Serious Microcystis bloom was observed in July-December 2008 and Bacillariophyta and Cryptophyta dominated in January-June 2009. BCC was characterized by DGGE of 16S rRNA gene with subsequent sequencing. The DGGE banding patterns revealed a remarkable seasonality which was closely related to phytoplankton community succession. Variation trend of Shannon-Wiener diversity index in bacterioplankton community was similar to that of phytoplankton community. CCA revealed that temperature and phytoplankton played key roles in structuring BCC. Sequencing of DGGE bands suggested that the majority of the sequences were affiliated with common phylogenetic groups in freshwater: Alphaproteobacteria, Betaproteobacteria, Bacteroidetes and Actinobacteria. The cluster STA2-30 (affiliated with Actinobacteria) was found almost across the sampling time at the two study sites. We observed that the family Flavobacteriaceae (affiliated with Bacteroidetes) tightly coupled to diatom bloom and the cluster ML-5-51.2 (affiliated with Actinobacteria) dominated the bacterioplankton communities during Microcystis bloom. These results were quite similar at the two sampling sites, indicating that BCC changes were not random but with fixed pattern. Our study showed insights into relationships between phytoplankton and bacterioplankton communities at species level, facilitating a better understanding of microbial loop and ecosystem functioning in the lake.  相似文献   

2.
The studies of cyanobacterial blooms resulting from eutrophication or climate change and investigation of changes in the cyanobacterial community in freshwater environments are critical for the management of drinking water. Therefore, we investigated the cyanobacterial communities at 6 sites along the Nakdong River in South Korea from May 2012 to October 2012 by using high-throughput sequencing techniques and studied their relationship with various geochemical factors at sampling sites. Diverse genera (total of 175 genera) were detected within the cyanobacteria, and changes in their compositions were analyzed. The genus Prochlorococcus predominated in the May samples, especially in those obtained from the upstream part of the river, whereas the relative abundance of Microcystis and Anabaena increased with increase in water temperature. The relationship between the cyanobacterial community and environmental factors was analyzed by canonical correlation analysis, and the correlation between harmful cyanobacteria and chemical factors was analyzed by nonmetric multidimensional scaling ordination. Various environmental factors such as dissolved oxygen, pH, electric conductivity, temperature were found to affect the cyanobacterial communities in the river. The results of this study could help in the management of freshwater environments and in maintenance of drinking water quality.  相似文献   

3.
Paerl HW  Xu H  McCarthy MJ  Zhu G  Qin B  Li Y  Gardner WS 《Water research》2011,45(5):1973-1983
Harmful cyanobacterial blooms, reflecting advanced eutrophication, are spreading globally and threaten the sustainability of freshwater ecosystems. Increasingly, non-nitrogen (N2)-fixing cyanobacteria (e.g., Microcystis) dominate such blooms, indicating that both excessive nitrogen (N) and phosphorus (P) loads may be responsible for their proliferation. Traditionally, watershed nutrient management efforts to control these blooms have focused on reducing P inputs. However, N loading has increased dramatically in many watersheds, promoting blooms of non-N2 fixers, and altering lake nutrient budgets and cycling characteristics. We examined this proliferating water quality problem in Lake Taihu, China’s 3rd largest freshwater lake. This shallow, hyper-eutrophic lake has changed from bloom-free to bloom-plagued conditions over the past 3 decades. Toxic Microcystis spp. blooms threaten the use of the lake for drinking water, fisheries and recreational purposes. Nutrient addition bioassays indicated that the lake shifts from P limitation in winter-spring to N limitation in cyanobacteria-dominated summer and fall months. Combined N and P additions led to maximum stimulation of growth. Despite summer N limitation and P availability, non-N2 fixing blooms prevailed. Nitrogen cycling studies, combined with N input estimates, indicate that Microcystis thrives on both newly supplied and previously-loaded N sources to maintain its dominance. Denitrification did not relieve the lake of excessive N inputs. Results point to the need to reduce both N and P inputs for long-term eutrophication and cyanobacterial bloom control in this hyper-eutrophic system.  相似文献   

4.
An experiment using nitrogen stable isotope tracer (15N) was conducted to track the fate of nitrogen derived from cyanobacterial blooms and the effectiveness with which the seasonal blooms are retained by vegetated and unvegetated sediment in a large shallow eutrophic lake (Lake Taihu, China). 15N enriched Microcystis was injected into both unvegetated sediment and sediment occupied by common reed (Phragmites australis) in the littoral zone. Nutrient retention by the vegetated sediment was greater than by the unvegetated sediment, resulting in higher δ15N in the sediment nitrogen pool. The labeled Microcystis material was also distributed deeper into the vegetated sediment than the unvegetated sediment. A portion of the Microcystis-derived nitrogen was quickly assimilated, appearing first in the belowground biomass and subsequently in the aboveground biomass of the reed plants. The labeled nitrogen was found to support new growth as evidenced by 15N enrichment of new leaves. This study indicates that common reed beds in the littoral zone may play an important role in retention of sedimented planktonic materials.  相似文献   

5.
Microcystis colonies are known to overwinter on the surface of the sediment of freshwater ecosystems. However, little is known about the genotypic and toxicological dynamics of Microcystis populations during this benthic life stage. In this study, we report a two-year-long survey of benthic populations of Microcystis, which had spent from a few days to more than six years in the sediment. In order to avoid any interaction with the planktonic proliferations, we chose two deeply buried benthic populations, which could be easily dated. Quantitative PCR on mcyB gene and protein phosphatase inhibition assays were performed to measure their toxic potential, and their genotypic structure was assessed by Capillary Electrophoresis-Single Strand Conformation Polymorphism (CE-SSCP), based on 16S-23S Intergenic Transcribed Spacer (ITS). The microcystin content of the cells seemed to change sharply during the first few months of benthic survival, whereas this content was low and decreased steadily after several years of benthic life. No genetic selection was observed in either the proportion of potentially toxic clones or the ITS sequences for any of the populations considered. From these results, the benthic life stage of Microcystis appears to preserve the structure and the composition of the population over a far larger time scale than classical overwintering period. Finally, some genotypes were common in both of the benthic populations, even though they originated from planktonic blooms that had developed five years apart, suggesting a major overlap of planktonic proliferations in successive years.  相似文献   

6.
The cyanobacterium Microcystis, which occurs as colonies of different sizes under natural conditions, can produce toxic microcystins (MCs). To monitor the toxicity and assess the risk of Microcystis blooms in Lake Taihu, it is important to investigate the relationship between MC production and Microcystis colony size. In this study, we classified Microcystis collected from Zhushan Bay of Lake Taihu during blooms into four classes with size of <50 μm, 50–100 μm, 100–270 μm and >270 μm and studied their differences in MC production and genetic structure. The results showed that colonies with size of <50, 50–100, 100–270 and >270 μm produced 12.2 ± 11.2%, 19.5 ± 7.9%, 61.3 ± 12.6%, and 7.0 ± 9.6% of total MC, respectively. The proportion of cell density of colonies with size of 50–100, 100–270 and >270 μm was positively correlated with MC concentration during blooms, while that of colonies with size of <50 μm was negatively correlated. The MC cell quota tended to be higher during blooms in colonies with larger size except that of colonies with size of 100–270 μm was higher than that of colonies with size of >270 μm from June 11 to September 16. Colonies with size of <50 μm showed the highest proportion of the less toxic MC congener MC-RR, and colonies with size of >100 μm showed higher proportion of the most toxic MC congener MC-LR than colonies with size of <100 μm. Real-time PCR indicated that larger colonies had higher proportion of potential toxic genotype. Principal component analysis of PCR-denaturing gradient gel electrophoresis profile showed that cpcBA and mcyJ genotype compositions were different between colonies with size of <50 μm and colonies with size of >50 μm, and cpcBA genotype composition was also different among colonies with size of 50–100 μm, 100–270 μm and >270 μm. These results indicated that MC cell quota and congener composition were different in Microcystis colonies with different sizes in Lake Taihu during blooms, and the differences in MC production in colonies with different size resulted chiefly from the difference in their genotype composition. Therefore, the authorities of water quality monitoring and drinking water supply service in Lake Taihu should be alert that the toxicity of Microcystis colony with different size was different during blooms, and the high abundance of colonies larger than 50 μm could be an indicator of relatively high bloom toxicity.  相似文献   

7.
This study investigates the toxicity and post-exposure effects of dissolved microcystin (MC-LR) on the dominant copepods of the upper San Francisco Estuary (SFE), where blooms of the toxic cyanobacteria Microcystis aeruginosa coincide with record low levels in the abundance of pelagic organisms including phytoplankton, zooplankton, and fish. The potential negative impact of Microcystis on the copepods Eurytemora affinis and Pseudodiaptomus forbesi has raised concern for further depletion of high quality fish food. Response of copepods to MC-LR (MC) was determined using a 48-h standard static renewal method for acute toxicity testing. Following exposure, a life table test was performed to quantify any post-exposure impacts on survival and reproduction. The 48-h LC-50 and LC-10 values for MC were 1.55 and 0.14 mg/L for E. affinis; and 0.52 and 0.21 mg/L for P. forbesi. Copepod populations recovered once dissolved MC was removed and cultures returned to optimal conditions, suggesting no post-exposure effects of MC on copepod populations. Dissolved microcystin above 0.14 mg/L proved likely to have chronic effects on the survival of copepods in the SFE. Since such high concentrations are unlikely, toxicity from dissolved microcystin is not a direct threat to zooplankton of the SFE, and other mechanisms such as dietary exposure to Microcystis constitute a more severe risk.  相似文献   

8.
Cyanobacterial blooms are a frequent phenomenon in eutrophic freshwaters worldwide and are considered potential hazards to ecosystems and human health. Monitoring strategies based on conventional sampling often fail to cover the marked spatial and temporal variations in cyanobacterial distribution and fluctuating toxin concentrations inherent to cyanobacterial blooms. To deal with these problems, we employed a multi-scale approach for the study of a massive Microcystis bloom in Tajo River (Spain) utilizing 1) remote sensing techniques, 2) conventional water sampling and 3) analysis of chemotypical subpopulations. Tajo River at the study area is influenced by high temperatures waters diverted upstream from a nuclear power plant, the presence of a dam downstream and a high nutrient load, which provide optimal conditions for massive cyanobacterial proliferation. MERIS imagery revealed high Chl-a concentrations that rarely fell below 20 μg L−1 and moderate spatiotemporal variations throughout the study period (March-November 2009). Although the phytoplanktonic community was generally dominated by Microcystis, sampling points highly differed in cyanobacterial abundance and community composition. Microcystin (MC) concentrations were highly heterogeneous, varying up to 3 orders of magnitude among sampling points, exceeding in some cases WHO guideline values for drinking and also for recreational waters. The analysis of single colonies by MALDI-TOF MS revealed differences in the proportion of MC-producing colonies among points. The proportion of toxic colonies showed a highly significant linear correlation with total MC: biovolume ratio (r2 = 0.9; p < 0.001), evidencing that the variability in toxin concentrations can be efficiently addressed by simple analysis of subpopulations. We propose implementing a multi-scale monitoring strategy that allows covering the spatiotemporal heterogeneities in both cyanobacterial distribution (remote sensing) and MC concentrations (subpopulation analysis) and thereby reduce the main sources of uncertainty in the assessment of the risks associated to bloom events.  相似文献   

9.
It is generally agreed that the hepatotoxic microcystins (MCs) are the most abundant toxins produced by cyanobacteria in freshwater. In various freshwater lakes in East Africa MC-producing Microcystis has been reported to dominate the phytoplankton, however the regulation of MC production is poorly understood. From May 2007 to April 2008 the Microcystis abundance, the absolute and relative abundance of the mcyB genotype indicative of MC production and the MC concentrations were recorded monthly in five freshwater lakes in Uganda: (1) in a crater lake (Lake Saka), (2) in three shallow lakes (Lake Mburo, George, Edward), (3) in Lake Victoria (Murchison Bay, Napoleon Gulf). During the whole study period Microcystis was abundant or dominated the phytoplankton. In all samples mcyB-containing cells of Microcystis were found and on average comprised 20 ± 2% (SE) of the total population. The proportion of the mcyB genotype differed significantly between the sampling sites, and while the highest mcyB proportions were recorded in Lake Saka (37 ± 3%), the lowest proportion was recorded in Lake George (1.4 ± 0.2%). Consequently Microcystis from Lake George had the lowest MC cell quotas (0.03-1.24 fg MC cell−1) and resulted in the lowest MC concentrations (0-0.5 μg L−1) while Microcystis from Lake Saka consistently showed maximum MC cell quotas (14-144 fg cell−1) and the highest MC concentrations (0.5-10.2 μg L−1). Over the whole study period the average MC content per Microcystis cell depended linearly on the proportion of the mcyB genotype of Microcystis. It is concluded that Microcystis populations differ consistently and independently of the season in mcyB genotype proportion between lakes resulting in population-specific differences in the average MC content per cell.  相似文献   

10.
Different environmental conditions support optimal growth by Aphanizomenon and Microcystis in Ford Lake, Michigan, USA, based on weekly species biovolume and water chemistry measurements from June through October 2005-2007. Experimental withdrawal of hypolimnetic water through the outlet dam was conducted in 2006, with 2005 and 2007 acting as control years, to test theory regarding management of nuisance and toxic cyanobacteria. The dynamics of Aphanizomenon and Microcystis blooms in Ford Lake appear to be driven largely by NO3 concentrations, with higher levels shifting the advantage to Microcystis (P < 0.0001). Aphanizomenon was most successful with a mean TN:TP ratio (mol:mol) of 48.3:1, whereas Microcystis thrived with a mean ratio of 70.1:1. Withdrawal of hypolimnetic water successfully destabilized the water column and led to higher levels of NO3 and the near elimination of the Aphanizomenon bloom in 2006 (P < 0.0001). Selective withdrawal did not reduce Microcystis biovolume or microcystin toxicity. Microcystis biovolume and NO3 levels were positively correlated with microcystin toxin (P = 0.01) and jointly accounted for 30.5% of the variability in the data. Selective withdrawal may be a viable management option for improving water quality under certain circumstances. To fully address the problem of nuisance and toxic algal blooms in Ford Lake, however, an integrated approach is required that targets cyanobacteria biovolume dynamics as well as conditions suited for toxin production.  相似文献   

11.
Although microscope analysis is very useful for studying phytoplankton community composition, it does not allow for high frequency (spatial and/or temporal) data acquisition. In an attempt to overcome this issue, fluorescence-based approaches that use selective excitation of pigment antennae have spread rapidly. However, the ability of spectral fluorescence to provide accurate estimates of phytoplankton biomass and composition is still debated, and only a few datasets have been tested to date.In this study, we sampled of a wide range of water bodies (n = 50) in the Ile-de-France region (North Central France). We used the resulting extensive dataset to assess the ability of the bbe-Moldaenke FluoroProbe II (FP) to estimate phytoplankton community composition in lakes and reservoirs.We demonstrated that FP data yields better estimates of total phytoplankton biovolume than do spectrophotometric chlorophyll a measures and that FP data can be further corrected using the average chlorophyll a to biovolume ratio among phytoplankton groups. Overall, group-specific relationships between FP and biovolume data were consistent. However, we identified a number of cases where caution is required. We found that Euglenophytes are expected to depart from the global FP vs. biovolume relationship of the ‘green’ group due to varying Fv/Fm and pigment content in response to environmental conditions (photoautotrophic vs. photoheterotrophic growth). Then, it appears necessary to consider the composition of the Chromophytes community in order to obtain a good agreement between both biomass estimation methods. Finally, we confirmed the misattribution toward the ‘red’ group of phycoerythrin-containing cyanobacteria and the occurrence of a strong scattering in the relationship between the FP vs. biovolume of the ‘blue’ group that can be partly attributed to the occurrence of large colony-forming cyanobacteria (e.g., Microcystis spp, Aphanizomenon flos-aquae).We propose correcting procedures to improve the quality of data obtained from spectral fluorescence tools in the context of large-scale sampling of lakes and reservoirs.  相似文献   

12.
The utility of a multiple-fixed-wavelength spectral fluorometer, the Algae Online Analyser (AOA), as a means of quantifying phytoplankton biomass and community composition was tested using natural communities from two southeastern United States estuaries, North Inlet, South Carolina, and the Neuse River Estuary, North Carolina. Estimates of biomass (as chlorophyll a) were correlated with HPLC values and variations (usually over-estimates) were consistent with effects of light intensity and nutrient availability on fluorescence quenching. AOA estimates of taxonomic structure were consistent with those from HPLC-derived marker pigments by ChemTax, with both methods indicating domination by chromophytes and green algae in North Inlet and chromophytes and cyanobacteria in the Neuse. We recommend frequent calibration by discrete sample collection, and calibration with species representative of the region of interest. Overall, the AOA appears to be a useful tool for monitoring of phytoplankton community composition, especially as an early warning system for the detection of harmful algal blooms.  相似文献   

13.
Cyanobacterial blooms in eutrophied water body are generally composed of various genotypes with or without microcystin-producing genes (mcy gene cluster). Thus there is a need for quantification of potent toxin producing strains. The present study aimed at identifying microcystin variants and its producer strains in Durgakund pond, Varanasi, India, based on quantification of cpcBA-IGS and mcyA (condensation domain) genes using real-time PCR and LC-MS. Increase in microcystin concentrations was correlated with increase in mcyA copy number and the level of pigments (chlorophyll a, phycocyanin and carotenoids). Also, selected environmental factors (water temperature, light irradiance, rainfall, pH, N and P) and the concentration of microcystin variants (MC-LR, -RR and -YR) were also assessed in samples during May 2010 to April 2011 to establish the possible correlation among these parameters. Nutrients favored cyanobacterial bloom but it could not be correlated with the levels of microcystin variants and seemed to be geographically specific. Microcystis sp. dominant in the pond comprised potentially toxigenic cells. The ratio of potentially toxigenic Microcystis sp. to that of total Microcystis sp. ranged from 0% to 14%. Such studies paved the way to identify and quantify the most potent microcystin producer in the tropical aquatic body.  相似文献   

14.
A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 µg L− 1. Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.  相似文献   

15.
The broad spectrum antimicrobials triclosan (TCS) and triclocarban (TCC) are commonly detected in the environment. However, there is very limited understanding of the aquatic ecological implications of these agents. During this study, river biofilms were cultivated using 10 µg l− 1 of TCS or TCC and the equivalent in nutrients (carbon, nitrogen) over a developmental period of 8 weeks. Confocal laser microscopy showed that the biofilm communities developing under the influence of TCS and TCC had community architecture and composition different from either control or nutrient exposed communities. Microscale analyses of biofilm community structure indicated a significant reduction in algal biomass (p < 0.05) as a result of exposure to either TCS or TCC. Thymidine incorporation did not detect significant differences between control and treated communities. The use of carbon utilization assays based on growth indicated that, in general, TCS and TCC suppressed utilization. The community was altered from one dominated by autotrophic processes to one dominated by heterotrophic processes. Both TCS and TCC treatments resulted in significant (p < 0.05) alterations in the composition of the EPS matrix of the communities, suggesting significant changes in community composition. Denaturing gradient gel electrophoresis and PCA-ANOSIM analyses indicated a significant change occurred in the bacterial community as a consequence of TCS treatments. Enumeration of micrometazoa and protozoa revealed an increase in micrometazoan numbers over control values, whereas no clear impact on protozoa was detected in any treatment. This study indicated significant effects of 10 µg l− 1 TCS and TCC on microbial community composition, algal biomass, architecture and activity.  相似文献   

16.
Tang Y  Zhang H  Liu X  Cai D  Feng H  Miao C  Wang X  Wu Z  Yu Z 《Water research》2011,45(9):2855-2862
Natural attapulgite (N-AT) and modified attapulgite (M-AT) were used in this study to evaluate their flocculation efficiencies and mechanisms in freshwater containing harmful algal blooms through conventional jar test procedure. The experimental results showed that the efficiency of flocculation can be significantly improved by M-AT under appropriate conditions. It was found that the attapulgite modified by hydrochloric acid was similar to polyaluminum ferric silicate chloride (PAFSiC). The high efficiency for M-AT to flocculate Microcystis aeruginosa in freshwater was due to the mechanism of bridging and netting effect. Caenorhabditis elegans was used to detect the toxicity of N-AT and M-AT. The results showed that there was no significant toxicity on this organism. Attapulgite is a natural material, which can be readily available, abundant, and relatively inexpensive. Using modified attapulgite to remove the harmful algal blooms could have the advantages of high effectiveness, low cost, and low impact on the environment.  相似文献   

17.
This is the first to conduct simultaneous determination of microcystin (MC) contaminations in multi-groups of vertebrates (fish, turtle, duck and water bird) from Lake Taihu with Microcystis blooms. MCs (-RR, -YR, -LR) in Microcystis scum was 328 μg g− 1 DW. MCs reached 235 μg g− 1 DW in intestinal contents of phytoplanktivorous silver carp, but never exceeded 0.1 μg g− 1 DW in intestinal contents of other animals. The highest MC content in liver of fish was in Carassius auratus (150 ng g− 1 DW), followed by silver carp and Culter ilishaeformis, whereas the lowest was in common carp (3 ng g− 1 DW). In livers of turtle, duck and water bird, MC content ranged from 18 to 30 ng g− 1 DW. High MC level was found in the gonad, egg yolk and egg white of Nycticorax nycticorax and Anas platyrhynchos, suggesting the potential effect of MCs on water bird and duck embryos. High MC contents were identified for the first time in the spleens of N. nycticorax and A. platyrhynchos (6.850 and 9.462 ng g− 1 DW, respectively), indicating a different organotropism of MCs in birds. Lakes with deaths of turtles or water birds in the literatures had a considerably higher MC content in both cyanobacteria and wildlife than Lake Taihu, indicating that toxicity of cyanobacteria may determine accumulation level of MCs and consequently fates of aquatic wildlife.  相似文献   

18.
《Water research》1987,21(1):99-106
Daphnia magna and Brachydanio rerio are important test organisms in toxicity tests. The bioaccumulation of zinc in these species was investigated in two semistatic experiments in synthetic freshwater with a zinc concentration of 250 μg 1−1. Fishes were fed with polluted or unpolluted Daphnia magna to determine the significance of zinc accumulation from contaminated natural food.Daphnia magna accumulates zinc to a high extent within days. Uptake from food particles substantially contributes to the zinc accumulation in filter-feeding Daphnia; their zinc content strongly depends on the total but not on the dissolved zinc concentration in water.Zinc concentration of Brachydanio rerio increases only to a small extent during the 5 weeks accumulation time. They accumulate no additional zinc from the food source. In unpolluted and polluted Brachydanio a significant negative correlation exists between whole body zinc concentration and body dry weight.  相似文献   

19.
The presence of pathogenic free-living amoebae (FLA) such as Naegleria fowleri in freshwater environments is a potential public health risk. Although its occurrence in various water sources has been well reported, its presence and associated factors in biofilm remain unknown. In this study, the density of N. fowleri in biofilms spontaneously growing on glass slides fed by raw freshwater were followed at 32 °C and 42 °C for 45 days. The biofilms were collected with their substrata and characterized for their structure, numbered for their bacterial density, thermophilic free-living amoebae, and pathogenic N. fowleri. The cell density of N. fowleri within the biofilms was significantly affected both by the temperature and the nutrient level (bacteria/amoeba ratio). At 32 °C, the density remained constantly low (1-10 N. fowleri/cm2) indicating that the amoebae were in a survival state, whereas at 42 °C the density reached 30-900 N. fowleri/cm2 indicating an active growth phase. The nutrient level, as well, strongly affected the apparent specific growth rate (μ) of N. fowleri in the range of 0.03-0.23 h−1. At 42 °C a hyperbolic relationship was found between μ and the bacteria/amoeba ratio. A ratio of 106 to 107 bacteria/amoeba was needed to approach the apparent μmax value (0.23 h−1). Data analysis also showed that a threshold for the nutrient level of close to 104 bacteria/amoeba is needed to detect the growth of N. fowleri in freshwater biofilm. This study emphasizes the important role of the temperature and bacteria as prey to promote not only the growth of N. fowleri, but also its survival.  相似文献   

20.
Kim YM  Cho HU  Lee DS  Park D  Park JM 《Water research》2011,45(17):5785-5795
To improve the efficiency of total nitrogen (TN) removal, solid retention time (SRT) and internal recycling ratio controls were selected as operating parameters in a full-scale activated sludge process treating high strength industrial wastewater. Increased biomass concentration via SRT control enhanced TN removal. Also, decreasing the internal recycling ratio restored the nitrification process, which had been inhibited by phenol shock loading. Therefore, physiological alteration of the bacterial populations by application of specific operational strategies may stabilize the activated sludge process. Additionally, two dominant ammonia oxidizing bacteria (AOB) populations, Nitrosomonas europaea and Nitrosomonas nitrosa, were observed in all samples with no change in the community composition of AOB. In a nitrification tank, it was observed that the Nitrobacter populations consistently exceeded those of the Nitrospira within the nitrite oxidizing bacteria (NOB) community. Through using quantitative real-time PCR (qPCR), nirS, the nitrite reducing functional gene, was observed to predominate in the activated sludge of an anoxic tank, whereas there was the least amount of the narG gene, the nitrate reducing functional gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号