首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread presence of fluoroquinolone antibiotics (FQs) in natural ecosystems is a health hazard for humans and other living organisms. The role of sunlight in degrading FQs present in environmental waters has been studied. In particular, the photodegradation of four largely employed FQs, viz. Ciprofloxacin (CIP), Danofloxacin (DAN), Levofloxacin (LEV) and Moxifloxacin (MOX) has been studied in not tampered river water. Degradation rates have been investigated at ppb levels (20-50 μg L−1) under solar light, and the results have been commented critically. The products distribution has been studied by HPLC-ESI-MS/MS analysis and structures have been attributed on the basis of their mass fragmentation spectra.Importantly from the environmental point of view, the (potentially toxic) FQ nucleus remained intact over the early stages of the degradation. Indeed, the photoproducts were proved to possess residual antibacterial activity, as shown from in vitro antibacterial activity tests against different well characterized human and environmental bacterial strains, carried out on the above FQs, as well as for Enrofloxacin (ENR) and Marbofloxacin (MAR).  相似文献   

2.
Nanomolar concentrations of steroid hormones such as 17β-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17β-estradiol demonstrated modest photodegradation (~ 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased (~ 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone.  相似文献   

3.
Steroid estrogens are endocrine disrupting contaminants frequently detected in natural waters. Because these estrogens can elicit significant biological responses in aquatic organisms, it is important to study their rates and pathways of degradation in natural waters and to identify whether the transformation products retain biological activity. Photochemical kinetics experiments were conducted under simulated solar light for the hormones 17β-estradiol (E2), 17α-ethinylestradiol (EE2), estrone (E1), equilin (EQ), and equilenin (EQN) under direct and indirect photolysis conditions. All of these hormones were susceptible to direct photodegradation, with half-lives ranging from 40 min for E1 to about 8 h for E2 and EE2. Indirect photolysis experiments with added Suwannee River fulvic acid (SRFA) lead to faster degradation rates for E2, EE2, and EQ. Added SRFA caused slower photodegradation rates for E1 and EQN, indicating that it acts primarily as an inner filter for these analytes. The well-established yeast estrogen screen (YES) was used to measure the estrogenicity of the analytes and their photoproducts. Results of YES assay experiments show that only the direct photolysis of E1 gave estrogenic products. Lumiestrone, the major E1 direct photolysis product, was isolated and characterized. It formed in 53% yield and exhibited moderate estrogenic activity. When photolysed in the presence of perinaphthenone, a potent synthetic sensitizer, E1 degraded via an indirect photolysis pathway and did not produce lumiestrone or any other active products. These results suggest that under typical natural water conditions photochemical reactions of E2, EE2, EQ, and EQN are expected to produce inactive products while E1 will give the estrogenic product lumiestrone in moderate yield.  相似文献   

4.
A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO2 (NF-TiO2) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.50 ± 0.02 × 10−3 μM min−1 at pH 3.0) and decreased to 2.29 ± 0.07 × 10−3 and 0.54 ± 0.02 × 10−3 μM min−1 at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO2 are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO2 was reduced when increasing the carbonate concentration up to 150 mg CaCO3 L−1. The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO2 photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (λ > 420 nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO2 under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins.  相似文献   

5.
Sulfapyridine (SPY), sulfonamide (SA) typically used in human therapies, and veterinary SA sulfamethazine (SMZ), are amongst the two SAS most frequently detected in effluent wastewater and surface water respectively. Within this context, this study reports the behaviour of both SAs and their acetylated metabolites, AcSPY and AcSMZ, under artificial irradiance conditions in both high performance liquid chromatography (HPLC) water and in reclaimed wastewater, in order to compare the influence of dissolved organic matter (DOM) and also inorganic matter in the photolysis kinetics. Estimated degradation rate constants (k) ranged from 0.063 h−1 (SPY) to 2.808 h−1 (AcSPY), both in HPLC water, with corresponding half-lives (t1/2) of 10.93 h and 0.25 h, respectively. A total of 10 different photodegradation products were identified during the photolytic transformation of SPY and 7 for SMZ, through ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry analyses (UPLC-QqTOF-MS), which allowed for exact mass measurements. Regarding the acetylated metabolites, 3 photoproducts were generated for AcSMZ and one for AcSPY. The desulfonated products of each of the four analytes under study were the most relevant photodegradation products identified.  相似文献   

6.
Photochemical behaviour of sulcotrione, a triketone herbicide, was studied in a variety of aqueous solutions including natural waters (sea and river) under laboratory conditions. Photodegradation experiments were carried out under two irradiation systems (UV-B and simulated solar radiation) in order to evaluate kinetics of active ingredient. The degradation kinetics, more rapid under UV-B radiation than solar simulator, followed a first-order reaction (photolysis half-lives ranged between 3 and 50 h) and appeared strongly dependent on water origin, pH value and molecular structure of the herbicide. Dissolved organic matter showed a retarding effect while low concentrations of nitrate ions had no effect on photolysis rate. Identification of photoproducts indicated that hydrolysis, a pH-dependent process (no degradation at pH >6 but at pH=3, k=0.0344 h(-1)), could be photoassisted. These results were compared to those of mesotrione, another triketone herbicide, which appeared more stable under UV-B irradiation. Toxicological studies on two marine heterotrophic bacteria and one cyanobacterium showed absence of effects up to 100 microgL(-1) for both sulcotrione and its photoproducts.  相似文献   

7.
The photochemical behaviour of three relevant metabolites of the analgesic and antipyretic drug dipyrone, 4-methylaminoantipyrine (4-MAA), 4-formylaminoantipyrine (4-FAA) and 4-acetylaminoantipyrine (4-AAA), was evaluated under simulated solar irradiation (Suntest system). For 4-MAA, different aqueous solutions (synthetic seawater, freshwater and Milli-Q water) as well as different operational conditions were compared. According to the experimental results, 4-MAA resulted as being an easily degraded molecule by direct photolysis, with half-life times (t1/2) ranging from 0.12 to 0.58 h, depending on the irradiation conditions. Faster degradation was observed in synthetic waters, suggesting that the photolysis was influenced by the salt composition of the waters. However, no effect on the degradation rate was observed by the presence of natural photosensitizers (dissolved organic matter, nitrate ions). 4-FAA and 4-AAA showed slower photodegradation kinetics, with t1/2 of 24 and 28 h, respectively. A study of photoproduct identification was carried out by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-time-of-flight mass spectrometry (LC-TOF-MS) (ESI positive mode), which allowed us to propose a tentative photodegradation pathway for 4-MAA and the identification of persistent by-products in all the cases. Finally, the application of an acute toxicity test (Daphnia magna) showed an increase in toxicity during the photolytic process, a consequence of the formation of toxic photoproducts.  相似文献   

8.
Degradation of the biorecalcitrant pharmaceutical micropollutant ibuprofen (IBP) was carried out by means of several advanced oxidation hybrid configurations. TiO2 photocatalysis, photo-Fenton and sonolysis - all of them under solar simulated illumination - were tested in the hybrid systems: sonophoto-Fenton (FS), sonophotocatalysis (TS) and TiO2/Fe2+/sonolysis (TFS). In the case of the sonophoto-Fenton process, the IBP degradation (95%) and mineralization (60%) were attained with photo-Fenton (FH). The presence of ultrasonic irradiation slightly improves the iron catalytic activity. On the other hand, total removal of IBP and elimination of more than 50% of dissolved organic carbon (DOC) were observed by photocatalysis with TiO2 in the presence of ultrasound irradiation (TS). In contrast only 26% of mineralization was observed by photocatalysis with H2O2 (TH) in the absence of ultrasound irradiation. Additional results showed that, in the TFS system, 92% of DOC removal and complete degradation of IBP were obtained within 240 min of treatment. The advanced oxidation hybrid systems seems to be a promising alternative for full elimination/mineralization for the recalcitrant micro-contaminant IBP.  相似文献   

9.
Carbamazepine, a widely consumed psychotropic pharmaceutical, is one of the most commonly detected drugs in the environment. To better assess the environmental persistence of carbamazepine in aqueous matrices, the effect of pH and dissolved oxygen on the direct photodegradation rate of this pharmaceutical was evaluated in this study, using simulated solar irradiation. In order to follow the degradation and the emergence of photoproducts, a micellar electrokinetic chromatography based method was developed, consisting on the use of a dynamically coated capillary column. The developed methodology showed good repeatability and efficiency in the separation of carbamazepine and photoirradiation products. Also, seven photodegradation products were identified by electrospray mass spectrometry (ESI-MS), including the known carcinogenic acridine that was produced under all the pH and oxygenation levels studied and one newly identified photoproduct.This paper gives new insights into the role of dissolved oxygen on the photodegradation rate of carbamazepine. The results indicate that acidic pH, combined with the absence of dissolved oxygen in the aqueous matrix, results in very high direct photodegradation rates. At basic pH, dissolved oxygen does not interfere with the process and very low rates were observed. At environmentally relevant conditions, carbamazepine was shown to persist in the environment from 4.5 to 25 days.  相似文献   

10.
The photolysis of nonylphenol (NP) was investigated using a solar simulator in the absence/presence of dissolved organic matter (DOM), HCO3-, NO3- and Fe(III) ions. The effects of different parameters such as initial pH, initial concentration of substrate, temperature, and the effect of hydrogen peroxide concentration on photodegradation of nonylphenol in aqueous solution have been assessed. The results indicate that the oxidation rate increases in the presence of H2O2, Fe(III) and DOM with dissolved organic carbon concentrations not higher than 3 mg L(-1). Phenol, 1,4-dihydroxylbenzene and 1,4-benzoquinone were identified as intermediate products of photodegradation of nonylphenol, through an HPLC method. In addition, the disappearance of the estrogenic activity of nonylphenol during irradiation using YES test was investigated. Based upon the YES test results, there was a strong decrease of estrogenic activity of nonylphenol after 80 h irradiation in the presence of hydrogen peroxide.  相似文献   

11.
I. Michael 《Water research》2010,44(18):5450-5462
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe2+/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe2+ and H2O2 were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe2+ and H2O2 concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO2 process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment.  相似文献   

12.
In this study, varied nature organic matter isolates were employed to investigate the indirect photo transformation of terbutaline, which is a major feed additive medicine to increase the proportion of lean meat in the livestock. In the indirect photolysis of terbutaline under solar simulated irradiation, 1O2 plays an important role among the •OH and 3DOM. The reaction rate constant of 1O2 was determined as (7.1 ± 0.3) × 106 M−1 s−1 at pH 7.0, while the reaction rate constant of •OH was (6.87 ± 0.43) × 109 M−1 s−1. The contribution of singlet oxygen to the indirect photolysis of terbutaline (19–44%) was higher than that of the hydroxyl radical (1–7%). The pseudo first order rate constants for the photodegradation of terbutaline increase with increasing pH, which indicates that pH mainly affects the reaction rate of the singlet oxygen with the phenolic part of the terbutaline. The Quinone was identified as the main photosensitized product through LC–MS/MS analysis. It is also proposed that the degradation pathway of terbutaline involves reaction between the phenolic part of terbutaline and singlet oxygen. This finding strongly suggests that singlet oxygen was important factor for the photodegradation of terbutaline in natural waters.  相似文献   

13.
Chen Y  Li H  Wang Z  Li H  Tao T  Zuo Y 《Water research》2012,46(9):2965-2972
The photodegradation of the widely used β-blockers atenolol and metoprolol were investigated in the presence of fulvic acid (FA) under simulated sunlight. Both atenolol and metoprolol undergo indirect photodegradation in the FA solutions. The triplet excited state of FA (3FA) was verified to be main reactive species responsible for the photosensitized degradation of β-blockers. An electron transfer mechanism for the interaction between β-blockers and 3FA was proposed on the basis of a series of experiments. Magnetic property of metal ions exhibited significant impact on photosensitized degradation. Diamagnetic metal ions such as Mg2+, Ca2+, Zn2+, and Al3+ negligibly affected the degradation. In contrast, paramagnetic metal ions including Mn2+, Cu2+, Fe3+, and Cr3+ markedly inhibited the reactions in the order of Cr3+ < Fe3+ < Cu2+ < Mn2+. The inhibition was related to the complexation ability with FA. By LC-ESI-MS/MS analysis, deisopropyl-atenolol (metoprolol) was identified as the main photosensitized product. The degradation pathways of β-blockers involving electron transfer processes were proposed. This finding strongly suggests that 3FA was important reactive species for the degradation of β-blockers in natural waters.  相似文献   

14.
A solar-driven UV/Chlorine advanced oxidation process   总被引:1,自引:0,他引:1  
An overlap of the absorption spectrum of the hypochlorite ion (OCl) and the ultraviolet (UV) end of the solar emission spectrum implies that solar photons can probably initiate the UV/chlorine advanced oxidation process (AOP). The application of this solar process to water and wastewater treatment has been investigated in this study. At the bench-scale, the OCl photolysis quantum yield at 303 nm (representative of the lower end of the solar UV region) and at concentrations from 0 to 4.23 mM was 0.87 ± 0.01. Also the hydroxyl radical yield factor (for an OCl concentration of 1.13 mM) was 0.70 ± 0.02. Application of this process, at the bench-scale and under actual sunlight, led to methylene blue (MB) photobleaching and cyclohexanoic acid (CHA) photodegradation. For MB photobleaching, the OCl concentration was the key factor causing an increase in the pseudo first-order rate constants. The MB photobleaching quantum yield was affected by the MB concentration, but not much by the OCl concentration. For CHA photodegradation, an optimal OCl concentration of 1.55 mM was obtained for a 0.23 mM CHA concentration, and a scavenger effect was observed when higher OCl concentrations were applied. Quantum yields of 0.09 ± 0.01 and 0.89 ± 0.06 were found for CHA photodegradation and OCl photolysis, respectively. In addition, based on the Air Mass 1.5 reference solar spectrum and experimental quantum yields, a theoretical calculation method was developed to estimate the initial rate for photoreactions under sunlight. The theoretical initial rates agreed well with the experimental rates for both MB photobleaching and CHA photodegradation.  相似文献   

15.
The influence of pesticide concentration, expressed as dissolved organic carbon (DOC), on combined solar photo-Fenton and biological oxidation treatment was studied using wastewater containing a mixture of five commercial pesticides, Vydate, Metomur, Couraze, Ditumur and Scala. Two initial DOC concentrations, 200 mg L−1 and 500 mg L−1 were assayed. Variation in biodegradability with photocatalytic treatment intensity was tested using Pseudomonas putida. Thus the mineralisation required for combining with biodegradation of intermediates by activated sludge was 33% and 55% at 200 mg L−1 and 500 mg L−1, respectively. Biotreatment was carried out in a stirred tank in sequencing batch reactor (SBR) mode. As revealed by the biodegradation kinetics, intermediates generated at the higher pesticide concentration caused lower carbon removal rates in spite of the longer photo-Fenton treatment time applied. One strategy for treating water with high concentrations of pesticides and overcoming the low biodegradability of photo-Fenton intermediates is to mix it with a biodegradable carbon source before biological oxidation. This combination of photo-Fenton and acclimatized activated sludge in several SBR cycles led to complete biodegradation of a concentrated pesticide solution of 500 mg L−1 DOC in 5 h with a carbon removal efficiency of 90%.  相似文献   

16.
Xiong Z  Ma J  Ng WJ  Waite TD  Zhao XS 《Water research》2011,45(5):2095-2103
Mesoporous anatase (TiO2) was modified with silver (Ag) nanoparticles using a photoreduction method. Performance of the resulting TiO2-Ag nanocomposites for water purification was evaluated using degradation of Rhodamine B (RhB) and disinfection of Escherichia coli (E. coli) under ultraviolet (UV) irradiation. The composites with different Ag loadings were characterized using physical adsorption of nitrogen, X-ray diffraction, X-ray photoelectron spectroscopy and UV-Visible diffuse reflectance spectroscopic techniques. The results showed that metallic Ag nanoparticles were firmly immobilized on the TiO2 surface, which improved electron-hole separation by forming the Schottky barrier at the TiO2-Ag interface. Photocatalytic degradation of RhB and inactivation of E. coli effectively occurred in an analogical trend. The deposited Ag slightly decreased adsorption of target pollutants, but greatly increased adsorption of molecular oxygen with the latter enhancing production of reactive oxygen species (ROSs) with concomitant increase in contaminant photodegradation. The optimal Ag loadings for RhB degradation and E. coli disinfection were 0.25 wt% and 2.0 wt%, respectively. The composite photocatalysts were stable and could be used repeatedly under UV irradiation.  相似文献   

17.
This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L−1) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe2+]0 = 5 mg L−1; [H2O2]0 = 75 mg L−1) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m3 day−1 of secondary wastewater effluent was found to be 0.85 € m−3.  相似文献   

18.
Pulsed light technology consists of a successive repetition of short duration (325 μs) and high power flashes emitted by xenon lamps. These flashlamps radiate a broadband emission light (approx. 200-1000 nm) with a considerable amount of light in the short-wave UV spectrum. In the present work, this technology was tested as a new tool for the degradation of the herbicide atrazine in water. To evaluate the presence and evolution with time of this herbicide, as well as the formation of derivatives, liquid chromatography-mass spectrometry (electrospray ionization) ion trap operating in positive mode was used. The degradation process followed first-order kinetics.Fluences about1.8-2.3 J/cm2 induced 50% reduction of atrazine concentration independently of its initial concentration in the range 1-1000 μg/L. Remaining concentrations of atrazine, below the current legal limit for pesticides, were achieved in a short period of time. While atrazine was degraded, no chlorinated photoproducts were formed and ten dehalogenated derivatives were detected. The molecular structures for some of these derivatives could be suggested, being hydroxyatrazine the main photoproduct identified. The different formation profiles of photoproducts suggested that the degradation pathway may include several successive and competitive steps, with subsequent degradation processes taking part from the already formed degradation products. According to the degradation efficiency, the short treatment time and the lack of chloroderivatives, this new technology could be considered as an alternative for water treatment.  相似文献   

19.
Benzodiazepines are widely consumed psychiatric pharmaceuticals which are frequently detected in the environment. The environmental persistence and fate of these pharmaceuticals as well as their degradation products is of high relevance and it is, yet, scarcely elucidated. In this study, the relevance of photodegradation processes on the environmental persistence of four benzodiazepines (oxazepam, diazepam, lorazepam and alprazolam) was investigated. Benzodiazepines were irradiated under simulated solar irradiation and direct and indirect (together with three different fractions of humic substances) photodegradation kinetics were determined. Lorazepam was shown to be quickly photodegradated by direct solar radiation, with a half-life time lower than one summer sunny day. On the contrary, oxazepam, diazepam and alprazolam showed to be highly resistant to photodegradation with half-life times of 4, 7 and 228 summer sunny days, respectively. Apparent indirect and direct photodegradation rates are of the same order of magnitude. However, humic acids were consistently responsible for a decrease in the photodegradation rates while fulvic acids and XAD4 fraction caused an enhancement of the photodegradation. Overall, the results highlight that photodegradation might not be an efficient pathway to prevent the aquatic environmental accumulation of oxazepam, diazepam and alprazolam. Also, nineteen direct photodegradation products were identified by electrospray mass spectrometry, the majority of which are newly identified photoproducts. This identification is crucial to a more complete understanding of the environmental impact of benzodiazepines in aquatic systems.  相似文献   

20.
Zhang Y  Zhou JL  Ning B 《Water research》2007,41(1):19-26
The TiO(2)-assisted photodegradation of two natural female hormones, estrone (E1) and 17beta-estradiol (E2), was investigated in two UV-photo-reactors, followed by solid-phase extraction and analysis by gas chromatography-mass spectrometry (GC-MS). The degradation of E1 and E2 in both reactors followed the pseudo-first-order kinetics. In reactor 1 (150W), 97% of compounds were degraded within 4h of irradiation. Even more rapid degradation was observed in reactor 2 (15W) where 98% of both compounds disappeared within 1h, due to the shorter wavelength of UV-light in reactor 2 (fixed at 253nm) than reactor 1 (238-579nm). The influences of different initial chemical concentrations, pH value, the presence of dissolved organic matter and hydrogen dioxide, and the catalyst concentration on the degradation rate of E1 and E2 in aqueous solutions were investigated. The results show that the extent of photo-induced degradation of E1 and E2 strongly depends on the water constituents in solution. The degradation rate was increased when pH value was increased from 2 to 7.6, beyond which the degradation rate started to decrease. The presence of humic acid enhanced the degradation of E1 and E2 in both reactors as a result of photosensitisation effect of humic acid chromophore. The degradation rate increased with an increase in H(2)O(2) concentration. The degradation rate was also enhanced by increasing catalyst concentration up to 2g/l. The findings therefore suggest that photocatalysis can be a very effective method of rapidly removing certain EDCs from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号