首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 μg/L) and acetaminophen (7.1-11.4 μg/L), antibiotic ofloxacin (0.89-31.7 μg/L), lipid regulators gemfibrozil (2.0-5.9 μg/L) and bezafibrate (1.9-29.8 μg/L), β-blocker atenolol (0.84-2.8 μg/L), hypoglycaemic agent glibenclamide (0.12-15.9 μg/L) and a diuretic hydrochlorothiazide (2.3-4.8 μg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., β-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated.Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.  相似文献   

2.
Occurrence and removal efficiencies of 20 pharmaceuticals and personal care products (PPCPs) including antibiotics, hormones, and several other miscellaneous pharmaceuticals (analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, and stimulants) were investigated in five wastewater treatment plants (WWTPs) of Ulsan, the largest industrial city of Korea. The compounds were extracted from wastewater samples by solid-phase extraction (SPE) and analyzed by High-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The results showed that acetaminophen, atenolol and lincomycin were the main individual pollutants usually found in concentrations over 10 μg/L in the sewage influent. In the WWTPs, the concentrations of analgesic acetaminophen, stimulant caffeine, hormones estriol and estradiol decreased by over 99%. On the contrary, the antibiotic sulfamethazine, the antihypertensive metoprolol, and the antiepileptic carbamazepine exhibited removal efficiencies below 30%. Particularly, removal of antibiotics was observed to vary between − 11.2 and 69%. In the primary treatment (physico-chemical processes), the removal of pharmaceuticals was insignificant (up to 28%) and removal of majority of the pharmaceuticals occurred during the secondary treatment (biological processes). The compounds lincomycin, carbamazepine, atenolol, metoprolol, and triclosan showed better removal in WWTPs employing modified activated sludge process with co-existence of anoxic-oxic condition. Further investigation into the design and operational aspects of the biological processes is warranted for the efficient removal of PPCPs, particularly antibiotics, to secure healthy water resource in the receiving downstream, thereby ensuring a sustainable water cycle management.  相似文献   

3.
The occurrence of 18 commonly used pharmaceuticals was investigated in an agricultural area, which is primarily affected by runoff from agricultural fields and septic systems, on the coastline of Maumee Bay, within the western Lake Erie basin. Selected pharmaceuticals were detected in surface water, except clofibric acid and fluoxethine. The most frequently detected compounds were caffeine (88%), carbamazepine (57%) and paraxanthine (56%). Caffeine, carbamazepine, ibuprofen and paraxanthine were detected with maximum concentrations of 4.2, 1.2, 2.8 and 1.8 μg L−1, respectively. However, no compound was detected in any sediment samples. In a field receiving biosolids application, pharmaceuticals were detected in the field tile drainage following biosolids application but not in soil. The occurrence of pharmaceuticals in surface water can be linked to the use of septic systems.  相似文献   

4.
Liquid chromatography/tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was used to measure the concentrations of 14 pharmaceuticals, 6 hormones, 2 antibiotics, 3 personal care products (PCPs), and 1 flame retardant in surface waters and wastewater treatment plant effluents in South Korea. Tris (2-chloroethyl) phosphate (TCEP), iopromide, naproxen, carbamazepine, and caffeine were quite frequently observed (>80%) in both surface waters and effluents. The analytes of greatest concentration were iopromide, TCEP, sulfamethoxazole, and carbamazepine. However, the primary estrogen hormones, 17alpha-ethynylestradiol and 17beta-estradiol, were rarely detected, while estrone was detected in both surface water and wastewater effluent. The elimination of these chemicals during drinking water and wastewater treatment processes at full- and pilot-scale also was investigated. Conventional drinking water treatment methods were relatively inefficient for contaminant removal, while efficient removal (approximately equal to 99%) was achieved by granular activated carbon (GAC). In wastewater treatment processes, membrane bioreactors (MBR) showed limited target compound removal, but were effective at eliminating hormones and some pharmaceuticals (e.g., acetaminophen, ibuprofen, and caffeine). Membrane filtration processes using reverse osmosis (RO) and nanofiltration (NF) showed excellent removal (>95%) for all target analytes.  相似文献   

5.
The occurrence of fifty-five pharmaceuticals, hormones and metabolites in raw waters used for drinking water production and their removal through a drinking water treatment were studied. Thirty-five out of fifty-five drugs were detected in the raw water at the facility intake with concentrations up to 1200 ng/L. The behavior of the compounds was studied at each step: prechlorination, coagulation, sand filtration, ozonation, granular activated carbon filtration and post-chlorination; showing that the complete treatment accounted for the complete removal of all the compounds detected in raw waters except for five of them. Phenytoin, atenolol and hydrochlorothiazide were the three pharmaceuticals most frequently found in finished waters at concentrations about 10 ng/L. Sotalol and carbamazepine epoxide were found in less than a half of the samples at lower concentrations, above 2 ng/L. However despite their persistence, the removals of these five pharmaceuticals were higher than 95%.  相似文献   

6.
The presence and fate of 56 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) were investigated in the South Wales region of the UK. Two contrasting rivers: River Taff and River Ely were chosen for this investigation and were monitored for a period of 10 months. The impact of the factors affecting the levels of concentration of PPCPs and illicit drugs in surface water such as surrounding area, proximity to wastewater effluent and weather conditions, mainly rainfall was also investigated. Most PPCPs were frequently found in river water at concentrations reaching single microgL(-1) and their levels depended mainly on the extent of water dilution resulting from rainfall. Discharge of treated wastewater effluent into the river course was found to be the main cause of water contamination with PPCPs. The most frequently detected PPCPs represent the group of pharmaceuticals dispensed at the highest levels in the Welsh community. These were antibacterial drugs (trimethoprim, erythromycin-H(2)O and amoxicillin), anti-inflammatories/analgesics (paracetamol, tramadol, codeine, naproxen, ibuprofen and diclofenac) and antiepileptic drugs (carbamazepine and gabapentin). Only four PPCPs out of 56 (simvastatin, pravastatin, digoxin and digoxigenin) were not quantified over the course of the study. Several PPCPs were found to be both ubiquitous and persistent in the aqueous environment (e.g. erythromycin-H(2)O, codeine, carbamazepine, gabapentin and valsartan). The calculated average daily loads of PPCPs indicated that in total almost 6 kg of studied PPCPs are discharged daily into the studied rivers. The illicit drugs studied were found in rivers at low levels of ng L(-1). Average daily loads of amphetamine, cocaine and its main metabolite benzoylecgonine were as follows: 8, 1.2 and 39 gday(-1), respectively. Their frequent occurrence in surface water is primarily associated with their high illegal usage and is strongly associated with the discharge of insufficiently treated wastewater effluent.  相似文献   

7.
In this article, the results of three years monitoring of selected pharmaceuticals (diclofenac, ibuprofen, carbamazepine, salicylic acid, clofibric acid) in the wastewaters of the Czech Republic are presented. The monitoring was performed on selected Wastewater Treatment Plants (WWTP) with various treatment technology and designed capacity. The concentrations and treatment efficiency of these substances were observed in various profiles of each WWTP, including influent, mechanical pretreatment, biological treatment, effluent. The main processes of removing selected pharmaceuticals during wastewater treatment are discussed. These results are used for design wastewater treatment technology with improved treatment efficiency of these substances.  相似文献   

8.
We measured six acidic analgesics or anti-inflammatories (aspirin, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), two phenolic antiseptics (thymol, triclosan), four amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), three phenolic endocrine disrupting chemicals (nonylphenol, octylphenol, bisphenol A), and three natural estrogens (17beta-estradiol, estrone, estriol) in 24-h composite samples of influents and secondary effluents collected seasonally from five municipal sewage treatment plants in Tokyo. Aspirin was most abundant in the influent, with an average concentration of 7300 ng/L (n = 16), followed by crotamiton (921 ng/L), ibuprofen (669 ng/L), triclosan (511 ng/L), and diethyltoluamide (503 ng/L). These concentrations were 1 order of magnitude lower than those reported in the USA and Europe. This can be ascribed to lower consumption of the pharmaceuticals in Japan. Aspirin, ibuprofen, and thymol were removed efficiently during primary + secondary treatment (> 90% efficiency). On the other hand, amide-type pharmaceuticals, ketoprofen, and naproxen showed poor removal (< 50% efficiency), which is probably due to their lower hydrophobicity (logKow < 3). Because of the persistence of crotamiton during secondary treatment, crotamiton was most abundant among the target pharmaceuticals in the effluent. This is the first paper to report ubiquitous occurrence of crotamiton, a scabicide, in sewage. Because crotamiton is used worldwide and it is persistent during secondary treatment, it is a promising molecular marker of sewage and secondary effluent.  相似文献   

9.
The Hydra attenuata regeneration assay was used to identify the teratogenic potential of 10 pharmaceuticals identified in effluent from a large city wastewater treatment plant (WWTP). Three types of solvents were used to solubilise the pharmaceuticals (DMSO, acetone and ethanol), at concentrations determined to have no significant effect on measured endpoints. On the one hand, regeneration was significantly inhibited at (nominal) concentrations of 1, 5 and 1 mg/L for gemfibrozil, ibuprofen and naproxen respectively and at the higher concentration of 50 mg/L for bezafibrate and trimethoprim. On the other hand, carbamazepine and the antibiotics sulfapyridine, oxytetracycline and novobiocin significantly increased regeneration at 25, 5, 50 and 50 mg/L respectively. Relatively high IC50 values of 0.9, 3.84, 4.9 and 22.5 mg/L were calculated for gemfibrozil, ibuprofen, naproxen and bezafibrate, respectively. However when subjected to tier two toxicity assessment under EU regulatory guidance using environmentally relevant concentrations a MEC/PNEC value>1 was calculated for gemfibrozil, ibuprofen and naproxen indicating teratogenic potential and the necessity for further tier three assessment. A toxicity index (TI) was also calculated using three different techniques, with TI values>3 (indicating teratogenic potential) found for gemfibrozil, ibuprofen, naproxen and bezafibrate and >1 (indicating a weak teratogenic potential) found for carbamazepine. These results are discussed in the context of their environmental relevance and toxic potential.  相似文献   

10.
Two cosmetic ingredients (galaxolide, tonalide), eight pharmaceuticals (carbamazepine, diazepam, diclofenac, ibuprofen, naproxen, roxithromycin, sulfamethoxazole and iopromide) and three hormones (estrone, 17beta-estradiol and 17alpha-ethinylestradiol) have been surveyed along the different units of a municipal Sewage Treatment Plant (STP) in Galicia, NW Spain. Among all the substances considered, significant concentrations in the influent were only found for the two musks (galaxolide and tonalide), two anti-inflammatories (ibuprofen and naproxen), two natural estrogens (estrone, 17beta-estradiol), one antibiotic (sulfamethoxazole) and the X-ray contrast medium (iopromide), where the other compounds studied were below the limit of quantification. In the primary treatment, only the fragrances (30-50%) and 17beta-estradiol (20%) were partially removed. On the other hand, the aerobic treatment (activated sludges) caused an important reduction in all compounds detected, between 35% and 75%, with the exception of iopromide, which remained in the aqueous phase. The overall removal efficiencies within the STP ranged between 70-90% for the fragrances, 40-65% for the anti-inflammatories, around 65% for 17beta-estradiol and 60% for sulfamethoxazole. However, the concentration of estrone increased along the treatment due to the partial oxidation of 17beta-estradiol in the aeration tank.  相似文献   

11.
Sources of pharmaceutical pollution in the New York City Watershed   总被引:2,自引:0,他引:2  
An investigation was carried out in the New York City Watershed for the presence of selected pharmaceuticals. In four seasonal sampling events between August 2003 and May 2004, surface water was collected from eight reservoir keypoints and effluent was collected from four wastewater treatment plants. We evaluated the following twelve compounds: amoxicillin, atenolol, caffeine, carbamazepine, cephalexin, estrone, 17alpha-ethinylestradiol, 17beta-estradiol, ibuprofen, sulfamethoxazole, trimethoprim, and valproic acid. In the treated effluents, carbamazepine was detected most frequently (100%; concentration range: 22-551 ng/L), followed by atenolol (94%; ND - 14,200 ng/L), trimethoprim (83%; ND - 37,000 ng/L), ibuprofen (61%; ND - 14,600 ng/L), and caffeine (49%; ND - 37,200 ng/L), while estrone was detected once (56 ng/L). In the reservoir keypoint samples, only ibuprofen (2.5%; ND - 932 ng/L) and caffeine (2.9%; ND - 177 ng/L) were detected. The other analytes were not detected in any sample. It is expected that investigation of other wastewater treatment plants in the New York City Watershed would show that their effluents are also a potential source of pharmaceuticals, but that these pharmaceuticals are unlikely to be detected in the Watershed's surface waters.  相似文献   

12.
The documented presence of pharmaceuticals and personal care products (PPCPs) in water sources has prompted a global interest in understanding their environmental fate. Dissolved organic matter (DOM) can potentially alter the fate of these contaminants in aqueous systems by forming contaminant-DOM complexes. In-situ measurements were made to assess the interactions between three common PPCP contaminants and two distinct DOM sources: a wastewater treatment plant (WWOM) and the Suwannee River, GA (SROM). Aqueous DOM solutions (8.0 mg L−1 C, pH 7.4) were spiked with a range of concentrations of bisphenol-A, carbamazepine and ibuprofen to assess the DOM fluorophores quenched by PPCP interaction in excitation-emission matrices (EEM). Interaction effects on target analyte (PPCP) concentrations were also quantified using direct aqueous injection ultra high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). At low bisphenol-A concentration, WWOM fluorescence was quenched in an EEM region attributed to microbial byproduct-like and humic acid-like DOM components, whereas carbamazepine and ibuprofen quenched fulvic acid-like fluorophores. Fluorescence quenching of SROM by bisphenol-A and carbamazepine was centered on humic acid-like components, whereas ibuprofen quenched the fulvic acid-like fluorophores. Nearly complete LC-MS/MS recovery of all three contaminants was obtained, irrespective of analyte structure and DOM source, indicating relatively weak PPCP-DOM bonding interactions. The results suggest that presence of DOM at environmentally-relevant concentration can give rise to PPCP interactions that could potentially affect their environmental transport, but these DOM-contaminant interactions do not suppress the accurate assessment of target analyte concentrations by aqueous injection LC-MS/MSMS.  相似文献   

13.
The occurrence of five acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, diclofenac and bezafibrate, in seven different sewage treatment plants (STP) and three receiving waters were determined. The analytical procedure included solid phase extraction, liquid chromatographic separation and detection by a triple-quadrupole mass spectrometer. The studied pharmaceuticals were found in all the STPs. The pattern of the occurrence of individual compounds was the same in every STP and matched the consumption figures reported in the literature. Ibuprofen is the most used pharmaceutical in Finland and was accordingly found to be the most abundant compound in the raw sewage. In the treatment processes, the highest removal rate was observed for ibuprofen and the lowest for diclofenac, 92%+/-8% and 26%+/-17%, respectively. Due to the incomplete removal in the STPs, the pharmaceuticals were found in rivers at the discharge points of the STP effluents. Downstream from the discharge points, the concentrations decreased significantly mainly due to dilution in the river water. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration (MEC) and predicted no-effect concentration (PNEC). At the concentrations the compounds were found in the surface waters, they should not pose risk for the aquatic environment. However, at dry seasons and/or during malfunctions of STPs, ibuprofen could be associated with a risk in small river systems.  相似文献   

14.
This paper presents the results of a survey of the wastewater effluent and surface waters of the lower river Tyne, UK. Samples were analysed by reversed-phase high-performance liquid chromatography-electrospray tandem mass spectrometry following solid phase extraction, for the presence of 13 pharmaceuticals selected from the priority lists of the UK Environment Agency and the Oslo and Paris Commission (OSPAR). The pharmaceutical compounds measured were acetyl-sulfamethoxazole, clofibric acid, clotrimazole, dextropropoxyphene, diclofenac, erythromycin, ibuprofen, mefenamic acid, paracetamol, propranolol, sulfamethoxazole, tamoxifen and trimethoprim. Of the wastewater treatment works (WTW) samples (n=9) analysed, all compounds except sulfamethoxazole and acetyl-sulfamethoxazole were detected at concentrations ranging from 11 to 69,570 ng l(-1) (in raw effluent). In the surface water samples (n=18), clotrimazole, dextropropoxyphene, erythromycin, ibuprofen, propranolol, tamoxifen and trimethoprim were detected at concentrations ranging from 4 to 2370 ng l(-1). Results of this study show that various pharmaceutical compounds are effectively reduced during their passage through a tertiary wastewater treatment works, whilst others are sufficiently persistent to occur in estuarine systems.  相似文献   

15.
Concern is growing over contamination of the environment with pharmaceuticals because of their widespread use and incomplete removal during wastewater treatment, where microorganisms drive the key processes. The influence of pharmaceuticals on bacterial community structure in activated sludge was assessed in small-scale wastewater treatment bioreactors containing different concentrations (5, 50, 200 and 500 μg L−1) of several commonly used pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). T-RFLP analyses of the bacterial 16S rRNA genes indicated a minor but consistent shift in the bacterial community structure in the bioreactor R50 supplied with pharmaceuticals at a concentration of 50 μg L−1, compared to the control reactor R0, which was operated without addition of pharmaceuticals. In the reactors operated with higher concentrations of pharmaceuticals, a greater structural divergence was observed. Bacterial community composition was further investigated by preparation of two clone libraries of bacterial 16S rRNA genes from reactors R0 and R50. Most clones in both libraries belonged to the Betaproteobacteria, among which Thauera, Sphaerotilus, Ideonella and Acidovorax-related spp. dominated. Nitrite-oxidizing bacteria of the genus Nitrospira sp., which are key organisms for the second stage of nitrification in wastewater treatment plants, were found only in the clone library of the reactor without pharmaceuticals. In addition, diversity indices were calculated for the two clone libraries, indicating a reduced diversity of activated sludge bacterial community in the reactor supplied with 50 μg L−1 of each of selected pharmaceuticals.  相似文献   

16.
Municipal biosolids are a source of nutrients for crop production. Beneficial Management Practices (BMPs) can be used to minimize the risk of contamination of adjacent water resources with chemical or microbial agents that are of public or environmental health concern. In this field study, we applied biosolids slurry at a commercial rate using either subsurface injection or broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 22, 36 and 266 days post-application on 2 m2 microplots to evaluate surface runoff of 9 model pharmaceuticals and personal care products (PPCPs), atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole and triclosan. In runoff from the injected plots, concentrations of the model PPCPs were generally below the limits of quantitation. In contrast, in the broadcast application treatment, the concentrations of atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, sulfamethoxazole and triclosan on the day following application ranged from 70-1477 ng L− 1 in runoff and generally declined thereafter with first order kinetics. The total mass of PPCPs mobilized in surface runoff per m2 of the field ranged from 0.63 µg for atenolol to 21.1 µg for ibuprofen. For ibuprofen and acetaminophen, concentrations in runoff first decreased and then increased, suggesting that these drugs were initially chemically or physically sequestered in the biosolids slurry, and subsequently released in the soil. Carbamazepine and triclosan were detected at low concentrations in a runoff event 266 days after broadcast application. Overall, this study showed that injection of biosolids slurry below the soil surface could effectively eliminate surface runoff of PPCPs.  相似文献   

17.
Sichel C  Garcia C  Andre K 《Water research》2011,45(19):6371-6380
UV/chlorine (UV/HOCl and UV/ClO2) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H2O2 AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC).UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs.  相似文献   

18.
Fluoxetine has been tested in a two-species water-sediment system, which allowed a two-generation study with Chironomus riparius and a partial life-cycle with the freshwater snail Physa acuta to be performed at the same time. The design considered the continuous application of fluoxetine to overlaying water for nominal concentrations of 31.25, 62.5, 125 and 250 μg/L. A fifth treatment (87.5 μg/L) level consisted of pulse applications once a week. Measures of water and sediment concentrations were determined once a week and at the end of experiment (day 44), respectively. The fate study demonstrated that water dissipation can be explained by partitioning of fluoxetine to sediment. At the end of experiment, the percentage of detected fluoxetine was up to 10-fold higher in sediment than in overlaying water. The employed two-species test allowed distinguishing, in the same exposure conditions, effects due to waterborne exposure together ingestion at the sediment surface (freshwater grazing snail P. acuta) and exposure by burrowing activities (sediment-dwelling insect larvae C. riparius). The effect assessment showed a stimulation of P. acuta reproduction at lower concentrations (31.25 and 62.5 μg/L), while the opposite effect was observed at the highest treatment (250 μg/L). Additional studies should be conducted to establish if the statistically significant differences observed in F0 sex ratio at the 62.5 μg/L and F1 adult emergence at 31.25 μg/L of C. riparius have a toxicological significance. This study showed that fluoxetine can affect reproduction of freshwater molluscs. The results of the present study may contribute to knowledge on ecotoxicology of pharmaceuticals, about which little data is available. The possible consequences and implications for targeting the environmental risk assessment of fluoxetine are discussed.  相似文献   

19.
The occurrence and elimination of 19 micro-organic pollutants including endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process was investigated. The investigated process achieved over 70% removal of the target EDCs and 50%–100% removal of most of the PPCPs, with influent concentration ranging from ng/L to μg/L. Three PPCPs, carbamazepine, diclofenac and sulpiride were not well removed, with the removal efficiency below 20%. A rough mass balance suggests that the targets were eliminated through sludge-adsorption and/or biodegradation, the former of which was particularly significant for the removal of hydrophobic compounds. The two-phase fate model was employed to describe the kinetics of sludge-adsorption and biodegradation. It was found that the fast sludge adsorption (indicated by mass-transfer rates greater than 10 for most compounds) is responsible for the rapid decline of the aqueous concentration of the targets in the first compartment of the treatment process (i.e. in the anaerobic tank). In contrast, the slow biodegradation proved to be the rate-determining step for the entire degradation process, and the rates are generally positively related to the dissolved oxygen level. On the other hand, this study showed that the removal rates of most targets can reach a quasi-plateau in 5 h under aerobic conditions, indicating that hydraulic retention time of ca. 5 h in aerobic tanks should be sufficient for the elimination of most targets.  相似文献   

20.
A comprehensive method has been developed and validated in two different water matrices for the analysis of 16 pharmaceutical compounds using solid phase extraction (SPE) of water samples, followed by liquid chromatography coupled with tandem mass spectrometry. These 16 compounds include antibiotics, hormones, analgesics, stimulants, antiepileptics, and X-ray contrast media. Method detection limits (MDLs) that were determined in both reagent water and municipal tap water ranged from 0.1 to 9.9 ng/L. Recoveries for most of the compounds were comparable to those obtained using U.S. EPA methods. Treated and untreated water samples were collected from 31 different water treatment facilities across Missouri, in both winter and summer seasons, and analyzed to assess the 16 pharmaceutical compounds. The results showed that the highest pharmaceutical concentrations in untreated water were caffeine, ibuprofen, and acetaminophen, at concentrations of 224, 77.2, and 70 ng/L, respectively. Concentrations of pharmaceuticals were generally higher during the winter months, as compared to those in the summer due, presumably, to smaller water quantities in the winter, even though pharmaceutical loadings into the receiving waters were similar for both seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号