共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate attenuation in groundwater: a review of biogeochemical controlling processes 总被引:24,自引:0,他引:24
Biogeochemical processes controlling nitrate attenuation in aquifers are critically reviewed. An understanding of the fate of nitrate in groundwater is vital for managing risks associated with nitrate pollution, and to safeguard groundwater supplies and groundwater-dependent surface waters. Denitrification is focused upon as the dominant nitrate attenuation process in groundwater. As denitrifying bacteria are essentially ubiquitous in the subsurface, the critical limiting factors are oxygen and electron donor concentration and availability. Variability in other environmental conditions such as nitrate concentration, nutrient availability, pH, temperature, presence of toxins and microbial acclimation appears to be less important, exerting only secondary influences on denitrification rates. Other nitrate depletion mechanisms such as dissimilatory nitrate reduction to ammonium and assimilation of nitrate into microbial biomass are unlikely to be important in most subsurface settings relative to denitrification. Further research is recommended to improve current understanding on the influence of organic carbon, sulphur and iron electron donors, physical restrictions on microbial activity in dual porosity aquifers, influences of environmental condition (e.g. pH in poorly buffered environments and salinity in coastal or salinized soil settings), co-contaminant influences (particularly the contrasting inhibitory and electron donor influences of pesticides) and improved quantification of denitrification rates in the laboratory and field. 相似文献
2.
Free surface water constructed wetlands (CWs) provide a buffer between domestic wastewater treatment plants and natural waterways. Understanding the biogeochemical processes in CWs is crucial to improve their performance. In this study we measured a range of water and sediment parameters, and biogeochemical processes, in an effort to describe the processing of nutrients within two wetland cells in series. As a whole the studied CW effectively absorbed both nitrogen (N) and phosphorus (P) emanating from the waste treatment plant. However the two individual cells showed marked differences related to the availability of oxygen within the water column and the sediments. In one cell we speculated that the prevalence of surface plant species reduced its ability to function as a net nutrient sink. Here we observed a build-up of sediment organic matter, sediment anoxia, a decoupling of nitrification-denitrification, and a flux of N and P out of the sediments to the overlying water. The availability of DO in the surface sediments of the second studied cell led to improved coupling between nitrification-denitrification and a net uptake of both NH4+ and PO43−. We hypothesise that the dominance of deeply rooted macrophytes in the second cell was responsible for the improved sediment quality. 相似文献
3.
The effect of pre-aeration on the purification processes in the long-term performance of a horizontal subsurface flow constructed wetland 总被引:1,自引:0,他引:1
Different conditions (water level, oxygen supply) prevailing in both beds of the Kodij?rve double-bed horizontal subsurface flow (HSSF) constructed wetland (CW) (Southern Estonia; constructed in 1996, total area 312.5 m(2), 40 pe) provide the opportunity to compare how different operational methods have altered the efficiency of the purification processes inside the HSSF CW. In summer 2002 a vertical subsurface flow (VSSF) CW (total area 37.4 m(2)) was added as the first stage of the system. Data from 18 sampling wells installed in Kodij?rve HSSF CW from two periods is compared: 1st period -- January 2000-April 2002 (before the VSSF CW was built); 2nd period --October 2002-December 2004 (after the construction of the VSSF filter). The VSSF CW has remarkably improved aerobic conditions in both beds of the HSSF. Apart from total phosphorus concentrations in the right bed and nitrate nitrogen concentrations in the outflow of both beds, all of the water quality indicators (dissolved oxygen, total suspended solids, biological oxygen demand, ammonia nitrogen, nitrite nitrogen, total nitrogen and total iron) improved after the construction of the VSSF filter. Typically, purification processes in the HSSF CW were dependent on oxygen supply, which was partly influenced by the water level inside the filter beds. 相似文献
4.
Xiaohong Zhao Jinxuan Wang Xiangxin Meng Binling Zhang Rixia Zhang 《The International journal of environmental studies》2013,70(1):146-153
A ‘fan-shape’ constructed wetland (CW) system is designed to treat domestic wastewater as well as to provide an aesthetically pleasing and environmentally sensitive landscape with ornamental plants for recreation. The system consists of two-stage subsurface horizontal flow CW cells with dewatered alum sludge cakes as the main substrate to ensure the treatment efficiency. The system is located in a new countryside village in Northwest China. The paper presents the design considerations of the CW together with the surrounding landscape to create an integrated CW (ICW). The study attempts to show how the wastewater infrastructure of CW can be an attractive feature in a community; bringing utility and beauty together, and serving needs for education, recreation and habitat conservation, through integrating engineering and landscape design. 相似文献
5.
Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO(2)-bubbled system 总被引:2,自引:0,他引:2
In this study, the Fe(0)/CO(2) process was investigated for removing nitrate from aqueous solution under different operating conditions such as CO(2) bubbling rate (0-400 mL/min), Fe(0) dosage (1-6g/L), initial nitrate concentration (6-23 mgN/L), batch mode, and fresh Fe(0) supplementing (0-1g/L). Results show that the bubbling of CO(2) flow rate at 200 mL/min was sufficient for supplying H(+) into solution to create an acidic environment favorable to nitrate reduction reaction. It was found that sigmoidal model equation describes the S-curve behaviors of nitrate reduction, ferrous accumulation and ammonium formation satisfactorily, and the parameter t(1/2) of the proposed model equation serves as a powerful tool for the comparison of nitrate reduction rate. Sustainability test demonstrates that Fe(0) powder began to deteriorate after three batches operation. Concerning the operating modes, the batch mode with the treated solution emptied and freshly refilled outperforms the one, which was operated by retaining the treated solution and spiking concentrated nitrate into it for the next batch treatment. To guarantee satisfactory nitrate removal using the former mode, supplement of appropriate amount of Fe(0) needs to be optimized. 相似文献
6.
Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters 总被引:2,自引:0,他引:2
The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%. 相似文献
7.
To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain. 相似文献
8.
Muñoz-Leoz B Antigüedad I Garbisu C Ruiz-Romera E 《The Science of the total environment》2011,409(4):763-770
Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO2 and N2O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO3− L− 1 solution (rate: 90 mL day− 1) for 125 days at two different temperatures (10 and 20 °C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO3− concentration, NH4+ concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO2 and N2O) were determined in the undisturbed soil columns. The A horizon at 20 °C showed the highest rates of NO3− removal (1.56 mg N-NO3− kg−1 DW soil day− 1) and CO2 and N2O production (5.89 mg CO2 kg−1 DW soil day− 1 and 55.71 μg N-N2O kg−1 DW soil day− 1). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO3− ha− 1 year− 1, and potential greenhouse gas emissions of 5620 kg CO2 ha− 1 year− 1 and 240 kg N-N2O ha− 1 year− 1. 相似文献
9.
A. Torabian B. Aminzadeh S. H. Hashemi 《The International journal of environmental studies》2013,70(6):725-734
This study investigates the concentration of nitrate in groundwater in the province of Tehran. It also proposes the combination of ion exchange and biological denitrification as an effective way of removing nitrate from drinking water. The concentration of nitrate was measured in more than 200 deep and semi‐deep wells spread throughout urban and rural areas in Tehran. The result proved the presence of nitrate in a wide area in the province, especially in the southern part of the city of Tehran, and areas next to industrial or agricultural centers. The results show that there is a linear relationship between R (the proportion of nitrate ion concentration to total nitrate and sulfate ion concentrations in the influent) and the amount of each nitrate and sulfate ion derived from total capacity of resins. The last step in this study included denitrification of the spent regenerant by SBR and BPBR. At high concentrations of salt and nitrate, BPBR performed well while SBR showed an average performance. 相似文献
10.
Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water 总被引:8,自引:0,他引:8
Using constructed wetlands, produced waters from oil fields (i.e., waters that have been in contact with oil in situ) can be treated to enhance water quality for irrigation purposes, or subsequent discharge to receiving aquatic systems. In produced water containing elevated levels of salt (i.e., brackish-produced waters), the ability to decrease the conductivity of the produced water may influence potential reuse of the water for irrigation purposes. The objectives of this research were (1) to determine the efficacy of a pilot-scale hybrid reverse osmosis (RO)-constructed wetland system for treatment and reuse of produced waters from an oil field, and (2) to assess the quality of treated water in terms of physicochemical characteristics and toxicity influencing reuse of the water for irrigation or other designated uses. Specifically, the performance of the hybrid treatment system was examined in terms of outflow water conductivity, total dissolved solids (TDS), and toxicity using Ceriodaphnia dubia and Pimephales promelas in 7-day static/renewal exposure tests. Prior to treatment, significant mortality was observed for C. dubia and P. promelas exposed for 7 days to 6.25% untreated produced water. Following treatment through the hybrid system, no significant mortality was observed in C. dubia or P. promelas exposed to 100% treated produced water when compared to the control organisms. The pilot-scale RO-constructed wetland system effectively decreased conductivity by 95% and TDS by 94% in the brackish produced water tested in this study. Following treatment, the produced water was suitable for irrigation or discharge to surface waters. Therefore, hybrid RO-constructed wetland treatment systems present a viable alternative for treatment and reuse of produced waters from oil fields. 相似文献
11.
Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate 总被引:21,自引:0,他引:21
Kuschk P Wiessner A Kappelmeyer U Weissbrodt E Kästner M Stottmeister U 《Water research》2003,37(17):4236-4242
The annual course of nitrogen removal in a stable operating subsurface horizontal flow constructed wetland (SSF) in a moderate climate was evaluated using a large pool of data from 4 years of operation. In spring and autumn removal efficiencies were found to depend on the nitrogen load in a linear mode. The efficiencies in winter and summer differed extremely (mean removal rates of 0.15/0.7 g m(-2) d(-1) (11%/53%) in January/August) and were independent of the nitrogen load (0.7-1.7 g m(-2) d(-1)) in principle. Oscillations of the removal rates in spring, forming several maxima, suggest seasonal specific effects caused by the dynamics of the plant-physiology finally determining the nitrification efficiency, i.e. via O(2)-supply. Nitrification is limited by temperature during all seasons and surprisingly in midsummer additionally restricted by other seasonal aspects forming a clear-cut relative nitrification minimum (mean rate of 0.43 g m(-2) d(-1) (32%)) in July. The importance and the effect of the plants' gas exchange and oxygen input into the rhizosphere are discussed. Denitrification was nearly complete in midsummer and was clearly restricted at seasonal temperatures below 15 degrees C. 相似文献
12.
Anniet M. Laverman Josette A. Garnier Emmanuelle M. Mounier Céline L. Roose-Amsaleg 《Water research》2010,44(6):1753-1764
A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (Rm) ranged between 3.0 and 7.1 μg N g−1 h−1, and affinity constant (Km) ranged from 7.4 to 30.7 mg N-NO3− L−1. These values were higher in slurry incubations with an Rm of 37.9 μg N g−1 h−1 and a Km of 104 mg N-NO3− L−1. Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4 ng N g−1 h−1 for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). 相似文献
13.
Removal of nitrogen is a key aspect in the functioning of constructed wetlands. However, incomplete denitrification may result in the net emission of the greenhouse gas nitrous oxide (N2O) resulting in an undesired effect of a system supposed to provide an ecosystem service. In this work we evaluated the genetic potential for N2O emissions in relation to the presence or absence of Phragmites and Typha in a free water surface constructed wetland (FWS-CW), since vegetation, through the increase in organic matter due to litter degradation, may significantly affect the denitrification capacity in planted areas. Quantitative real-time PCR analyses of genes in the denitrification pathway indicating capacity to produce or reduce N2O were conducted at periods of different water discharge. Genetic potential for N2O emissions was estimated from the relative abundances of all denitrification genes and nitrous oxide reductase encoding genes (nosZ). nosZ abundance was invariably lower than the other denitrifying genes (down to 100 fold), and differences increased significantly during periods of high nitrate loads in the CW suggesting a higher genetic potential for N2O emissions. This situation coincided with lower nitrogen removal efficiencies in the treatment cell. The presence and the type of vegetation, mainly due to changes in the sediment carbon and nitrogen content, correlated negatively to the ratio between nitrate and nitrite reducers and positively to the ratio between nitrite and nitrous oxide reducers. These results suggest that the potential for nitrous oxide emissions is higher in vegetated sediments. 相似文献
14.
15.
Sulphate is a normal constituent of domestic wastewater and reduced sulphur compounds are known to be potent inhibitors of plant growth and certain microbial activities. However, the knowledge about sulphate reduction and the effect on the removal of C and N in constructed wetlands is still limited. Investigations in laboratory-scale constructed wetland reactors were performed to evaluate the interrelation of carbon and nitrogen removal with the sulphate reduction by use of artificial domestic wastewater. Carbon removal was found to be only slightly affected and remained at high levels of efficiency (75-90%). Only at sulphate reduction intensities above 75 mgl(-1) (50% removal), a decrease of carbon removal of up to 20% was observed. A highly contrary behaviour of ammonia removal was found in general, which decreased exponentially from 75% to 35% related to a linear increase of sulphate reduction up to 75 mgl(-1) (50% removal). Since sulphate removal is considered to be dependant on the load of electron donors, the carbon load of the system was varied. Variation of the load changed the intensities of sulphate reduction immediately, but did not influence the carbon removal effectiveness. Doubling of the carbon concentration of 200 mgl(-1) BOD(5) for domestic wastewater usually led to sulphate reduction of up to 150 mgl(-1) (100% removal). The findings show that, particularly in constructed wetland systems, the sulphur cycle in the rhizosphere is of high importance for performance of the waste water treatment and may initiate a reconsideration of the amount of sulphate present in the tap water systems. 相似文献
16.
Sulfide-induced nitrate reduction in the sludge of an anaerobic digester of a zero-discharge recirculating mariculture system 总被引:2,自引:0,他引:2
The anaerobic digester is a vital component in a zero-discharge mariculture system as therein most of the organic matter is mineralized and nitrogen-containing compounds are converted to gaseous N2. Although denitrification is a major respiratory process in this nitrate-rich treatment stage, also sulfate respiration takes place and may cause undesirable high sulfide concentrations in the effluent water. To examine the effect of sulfide on nitrate reduction, in situ depth profiles of inorganic nitrogen and sulfur compounds were determined. Additionally, nitrate reduction was examined as a function of ambient sulfide concentrations in sludge collected from different locations in the anaerobic reactor. Depth profiles showed high concentrations of nitrate and low concentrations of sulfide and ammonia in the aqueous layer of the reactor. A sharp decrease of nitrate and an increase in sulfide and ammonia concentrations was measured at the water-sludge interface. Nitrate reduction was highest in this interface zone with rates of up to 8.05 ± 0.57 μmol NO3− h−1 g(sludge)−1. Addition of sulfide increased the nitrate reduction rate at all sludge depths, pointing to the important role of autotrophic denitrification in the anaerobic reactor. Dissimilatory nitrate reduction to ammonia (DNRA) was found to be low in all sludge layers but was enhanced when sludge was incubated at high sulfide concentrations. Although nitrate reduction rates increased as a result of sulfide addition to sludge samples, no differences in nitrate reduction rates were observed between the samples incubated with different initial sulfide concentrations. This as opposed to sulfide oxidation rates, which followed Michaelis-Menten enzymatic kinetics. Partial oxidation of sulfide to elemental sulfur instead of a complete oxidation to sulfate, could explain the observed patterns of nitrate reduction and sulfide oxidation in sludge incubated with different initial sulfide concentrations. 相似文献
17.
Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent 总被引:7,自引:0,他引:7
The mass emission rate of 12 pollutants from a wastewater treatment plant (WWTP) secondary effluent into a small tributary of the River Besòs (northeastern Spain) was determined. The pollutants tested included pharmaceutical and personal care products (PPCPs) and herbicides. Furthermore, a 1-ha surface flow constructed wetland (SFCW) was evaluated for pollution removal. Whereas the low concentration values (ngL(-1)) of PPCP discharge into the tributary was comparable to inter- and intra-campaigns, herbicides and a veterinary drug (flunixin) exhibited a high variability in concentrations (microgL(-1)). Moreover, removal efficiencies were often higher than 90% for all compounds, with the exception of carbamazepine and clofibric acid (ca. 30-47%). As expected, a seasonal trend of pollutant removal in the wetland was observed for compounds with low biodegradation and moderate photodegradation rates (i.e. naproxen and diclofenac). 相似文献
18.
An exploratory study on the management of undesirable cyanobacteria blooms with respect to off-flavor problems using an integrated vertical-flow constructed wetland (CW) was performed at a small commercial-scale channel catfish farm from 2004 to 2007. The results of the three-year experiment indicated that water treatment by the CW could reduce the possibility of dominance by undesirable cyanobacteria species that often cause off-flavor problems. A detailed investigation in 2007, showed that the concentrations of geosmin, MIB (2-methylisoborneol), and β-cyclocitral in the water of the recirculating pond (4.3 ng L−1, U.D. (undetected) and 0.2 ng L−1, respectively) treated by the CW were significantly lower than those in the control pond (152.6 ng L−1, 63.3 ng L−1 and 254.8 ng L−1, respectively). In addition, the relationships among the cyanobacteria species, the off-flavor compounds and ten environmental variables were explored by canonical correspondence analysis (CCA). The results showed that Oscillatoria sp., Oscillatoria kawamurae and Microcystis aeruginosa were the main sources of off-flavor compounds in the catfish ponds. The successful manipulation of undesirable cyanobacteria species potentially resulted in lower concentrations of odorous compounds in the water of the recirculating pond. An investigation of the concentrations of geosmin and MIB in catfish fillets showed that the levels of odorous compounds were below the OTC (odor threshold concentration) values in the recirculating pond but were above the OTC values from July to October in the control pond. Water recycling by the CW could potentially be one of the best management practices to control off-flavor occurrences in aquaculture. 相似文献
19.
Biological, aerobic degradation of an azo dye and of the resultant, recalcitrant, aromatic amines in a constructed wetland (CW) was demonstrated for the first time. A vertical-flow CW, planted with Phragmites sp. was fed with 127 mg l−1 of acid orange 7 (AO7) at hydraulic loads of 28, 40, 53 and 108 l m−2day−1. Color removal efficiencies of up to 99% clearly demonstrate cleavage of the azo bond, also confirmed by the similar AO7 removal and SO42− release rates revealing that adsorption onto the matrix was constant. The positive redox potential at the outlet demonstrates that aerobic conditions were present. Chemical oxygen demand and total organic carbon removal efficiencies of up to 93% were also indicative of AO7 mineralization. The degradation of sulfanilic acid was confirmed by the presence of NO3−, SO42− and secondary metabolites, which suggest at least two degradation pathways leading to a common compound, 3-oxoadipate. 相似文献
20.
The community-level substrate utilization test based on direct incubation of environmental samples in Biolog EcoPlates™ is a suitable and sensitive tool to characterize microbial communities. The aim of this study was to investigate the influence of plant roots and soil structure on the metabolic diversity of microorganisms in a constructed wetland with vertical flow.Sediment samples were taken from different filter depths representing specific filter layers. The color development representing the substrate utilization was measured with the samples over a period of 10 days. The average well color development (AWCD) for all carbon sources was calculated as an indicator of total activity and in order to compensate the influence of the inoculum's density on the color development in the plates. After transformation by dividing by the AWCD, the optical density data were analysed by principal component analysis (PCA). An analysis of the kinetic profile of the AWCD was carried out to increase the analytical power of the method. The corrected data have been successfully fit to the logistic growth equation. Three kinetic model parameters, the asymptote (K), the exponential rate of color change (p) and the time to the midpoint of the exponential portion of the curve (s), were used for statistical analysis of the physiological profile of the microbial community in the different filter layers of the constructed wetland.We found out that in the upper two horizons, which were rooted most densely, mainly easily degradable materials like specific carbohydrates were utilized, while in the lower layers, where only single roots occur, more biochemically inert compounds, e.g. 2-hydroxy benzoic acid, were utilized. Furthermore it could be shown that microorganisms in the surface layer benefited from the plant litter because they can utilize decay products of these. In the lower filter layers specialists took advantage because they had to cope with the biochemically inert materials and the lower nutrient supply. 相似文献