首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The 20-kDa protein gene is androgen regulated in rat ventral prostate. Intron 1 contains a 130-base pair complex response element (D2) that binds androgen (AR) and glucocorticoid receptor (GR) but transactivates only with AR in transient cotransfection assays in CV1 cells using the reporter vector D2-tkCAT. To better understand the function of this androgen-responsive unit, nuclear protein interactions with D2 were analyzed by DNase I footprinting in ventral prostate nuclei of intact or castrated rats and in vitro with ventral prostate nuclear protein extracts from intact, castrated, and testosterone-treated castrated rats. Multiple androgen-dependent protected regions and hypersensitive sites were identified in the D2 region with both methods. Mobility shift assays with 32P-labeled oligonucleotides spanning D2 revealed specific interactions with ventral prostate nuclear proteins. Four of the D2-protein complexes decreased in intensity within 24 h of castration. UV cross-linking of the androgen-dependent DNA binding proteins identified protein complexes of approximately 140 and 55 kDa. The results demonstrate androgen-dependent nuclear protein-DNA interactions within the complex androgen response element D2.  相似文献   

9.
10.
11.
Age-dependent loss of androgen sensitivity of the rat liver is associated with a marked increase in dehydroepiandrosterone/hydroxysteroid sulfotransferase (rStd) activity. Sulfonated steroid hormones are known to be ineffective in binding receptor proteins. These observations suggest that intracellular androgen sulfonation can physiologically influence androgen action. We have examined the inhibitory effect of rStd on androgen action in the human prostate cancer-derived PC-3 cells transfected with the rat androgen receptor (AR) expression plasmid and two androgen-responsive promoter reporter constructs (murine mammary tumor long-terminal repeat ligated to chloramphenicol acetyltransferase (CAT) gene and rat probasin androgen response element (ARE) ligated to firefly luciferase (LUC) gene). These transfected cells were dependent on 5alpha-dihydrotestosterone (DHT) for the activation of both reporter genes and showed about a 200- and a 800-fold increase of CAT and LUC activity, respectively, at 10(-10) M DHT over the no-hormone control. Expression of the sulfonating enzyme in this cell transfection system via the rStd expression plasmid caused a dose-dependent decline in the reporter activity with approximately 90% inhibition of androgen action at a rStd:AR plasmid ratio of 100. From these results we conclude that irrespective of a high level of AR, changes in the Std expression can markedly alter the androgen sensitivity of target cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号