共查询到19条相似文献,搜索用时 62 毫秒
1.
对模式分类中的近似线性可分问题提出了一种新的近似线性支持向量机(SVM):先对近似线性分类中的训练集所形成的两类凸壳进行了相似变形,使变形后的凸壳线性可分,再用平分最近点和最大间隔法求出理想的分划超平面,然后再通过求解最大间隔法的对偶问题得到基于相似压缩的近似线性SVM。此外,还从理论和实证分析两个方面将该方法与线性可分SVM及已有的近似线性可分SVM进行了对比分析,说明了该方法的优越性与合理性。 相似文献
2.
大规模数据集上非线性支持向量机(support vector machine, SVM)的求解代价过高,然而对于线性SVM却存在高效求解算法.为了应用线性SVM高效求解算法求解非线性SVM,并保证非线性SVM的精确性,提出一种基于近似高斯核显式描述的大规模SVM求解方法.首先,定义近似高斯核并建立其与高斯核的关系,推导近似高斯核与高斯核的偏差上界.然后给出近似高斯核对应的再生核希尔伯特空间(reproducing kernel Hilbert space, RKHS)的显式描述,由此可精确刻画SVM解的结构,增强SVM方法的可解释性.最后显式地构造近似高斯核对应的特征映射,并将其作为线性SVM的输入,从而实现了用线性SVM算法高效求解大规模非线性SVM.实验结果表明,所提出的方法能提高非线性SVM的求解效率,并得到与标准非线性SVM相近的精确性. 相似文献
3.
支持向量机作为一种新的机器学习方法,由于其建立在结构风险最小化准则之上,而不仅仅是使经验风险达到最小,从而使支持向量分类器具有较好的推广能力.并且,由于支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解.文章首先讨论了基于支持向量机的手写体相似汉字识别过程.然后,针对支持向量机识别手写汉字所遇到的问题进行了分析和阐述,并在此基础上提出了基于最小距离分类器分类的两级分类策略.最后,针对理论进行了实验仿真.实验结果有力证明了本文提出的基于svM的相似汉字识别方法的有效性. 相似文献
4.
支持向量机(support vector machine,SVM)算法因其在小样本训练集上的优势和较好的鲁棒性,被广泛应用于处理分类问题。但是对于增量数据和大规模数据,传统的SVM分类算法不能满足需求,增量学习是解决这些问题的有效方法之一。基于数据分布的结构化描述,提出了一种自适应SVM增量学习算法。该算法根据原样本和新增样本与当前分类超平面之间的几何距离,建立了自适应的增量样本选择模型,该模型能够有效地筛选出参与增量训练的边界样本。为了平衡增量学习的速度和性能,模型分别为新增样本和原模型样本设置了基于空间分布相似性的调整系数。实验结果表明,该算法在加快分类速度的同时提高了模型性能。 相似文献
5.
为了对目标进行快速的检测,提出了一种新的基于支持向量机的级联式分类器的构造方法。该级联分类器由若干个线性SVM弱分类器构成,结构简单,分类时间极快。针对级联结构中的每个节点的训练给出了一个新的SVM框架下的二次规划模型,这使得每个节点都有较高的正样本检测率和适当的负样本错检率。实际的实验结果表明,与经典非线性SVM分类器相比,这种分类器在保持SVM较强泛化性能的优点的同时,在检测效率方面更是具有明显的优势。 相似文献
6.
7.
从测试点的类别判断方式上进行改进,对容易错分的测试点给予多次判别机会,从而降低了SVM决策树的错分累积程度。仿真试验表明,改进的基于SVM决策树判别测试点类别方法与传统的基于SVM决策树判别测试点类别方法相比,具有较高的分类精度。 相似文献
8.
SVM多值分类器在脱机手写体相似汉字识别中的应用 总被引:7,自引:0,他引:7
相似字的普遍存在是影响脱机手写体汉字识别率低的主要原因之一。论文研究了支持向量机(SVM)多值分类器在手写相似汉字识别中的应用,所提出的方法采用了小波弹性网格技术提取汉字的特征,通过实验比较了三种不同的SVM分类器组合策略的分类效果。 相似文献
9.
针对具有多观测样本的相似不完整数据分类问题,提出基于SVM和多观测样本的相似数据分类算法。每类数据的多观测样本集由属于同一模式的单观测样本组成,每次分类时,对两个多观测样本集的标签做两次假设,通过比较不同标签假设下的分类误差确定多观测样本集的标签。该方法同时充分利用了样本类内的相关性和类间的差异性,实现了相似不完整数据的分类。实验结果验证了所提出方法的有效性。 相似文献
10.
针对人脸结构过于复杂,导致识别精度低的问题,提出基于支持向量机(Support Vector Machine,SVM)的人脸识别方法。首先,选取Gabor小波变换算法,利用高斯函数表示短时傅里叶变换的窗函数,通过对人脸图像的卷积运算,提取人脸图像的幅值特征以及相位特征。其次,选取主成分分析方法,对所提取的人脸图像特征进行特征降维处理。最后,设置完成降维处理的人脸特征值,作为SVM的输入,利用SVM输出人脸识别结果。实验结果表明,该方法在强光等复杂环境下,仍然可以精准识别人脸,人脸识别精度高于97%。 相似文献
11.
在网络入侵检测中,大规模数据集会导致支持向量机(SVM)方法训练时间长、检测速度慢。针对该问题,提出一种基于中间分类超平面的SVM入侵检测方法。通过对正常和攻击样本的聚类分析,定义聚类簇中心的边界面接近度因子,实现对标准SVM二次式的改进;用簇中心对其训练,获取一个接近最优超平面的中间分类超平面;确定距离阈值,以选取潜在支持向量,实现训练样本的缩减。在KDDCUP1999数据集上进行实验,结果表明,与聚类支持向量机方法相比,该方法能简化训练样本,提高SVM的训练和检测速度。 相似文献
12.
针对现实中经常遇到的各类样本分布范围相差很多、将各类样本误判的危害程度不同、或者各类样本数量差异悬殊等情况,提出了一种基于不等距超球体的SVM(NMS-SVM)算法。该算法以最大间隔为优化目标建立分类模型,同时引入距离比例参数λ,调整最优分类面到两类之间的距离。通过UCI数据库中数据集的分类仿真实验,比较了该算法与普通超球体算法以及最大间隔超球体算法的分类精度,证明了该算法的有效性。 相似文献
13.
研究一种新型相关模式识别技术——线性SVM相关滤波器的性能及其应用前景,构建一个两类物体识别模型,利用计算机合成线性SVM相关滤波器,分别考察其对抗物体平面内旋转、平面外旋转以及噪声干扰的能力,并与其它三种相关滤波器进行比较。实验结果表明,该滤波器具有最佳的抗平面内旋转能力、优秀的抗平面外旋转和抗噪声干扰能力,在真实环境下的平面内旋转图像识别和中小形变范围内三维物体识别领域具有良好的应用前景。 相似文献
14.
15.
16.
最小类方差支持向量机(MCVSVM)充分考虑数据的分布信息,但是在小样本情况下却仅利用类内散度矩阵非零空间中的信息。为了综合利用类内散度矩阵非零空间和零空间中的信息来进一步提高分类性能,文中首先在零空间中建立一种分类器——零空间分类器(NSC),然后再把MCVSVM和NSC进行融合,从而进一步提出集成分类器(EC)。不同于MCVSVM和NSC,EC综合考虑非零空间和零空间中的信息,体现出更强的泛化能力。最后通过实验验证算法的有效性。 相似文献
17.
18.