共查询到18条相似文献,搜索用时 62 毫秒
1.
近些年,利用计算机对极化SAR图像进行分类逐渐成为遥感领域的一个研究热点.本文采用全极化SAR数据,利用不同的特征提取算法提取特征,并基于随机森林模型最终实现对江苏沿海滩涂的分类.首先采用H/α和Freeman两种分解算法提取极化特征参数,采用灰度共生矩阵提取纹理特征参数;然后将提取的所有特征进行不同的组合,构成不同的特征集;最后采用随机森林模型对不同特征集合进行分类和精度评估.结果表明仅用纹理特征对沿海滩涂进行分类时效果较差;利用极化分解提取出的散射特征进行分类的结果要优于矩阵元素特征的分类结果;综合了极化散射特征和纹理特征的组合方式在沿海滩涂的分类中可以取得最优的分类结果,总体精度和Kappa系数可以达到94.44%和0.9305,表明极化SAR图像中蕴含的不同方面的特征在分类中具有一定的互补性. 相似文献
2.
针对利用Yamaguchi分解模型的四个散射分量直接进行类别归属判断精度不高并且所分类别有限的问题,结合模糊C均值的理论,提出了一种基于Yamaguchi分解模型的全极化SAR分类算法,把四个散射分量组成一组归一化的特征矢量,进行FCM聚类分析。并且用日本机载L波段PiSAR数据验证了该算法具有较高的分类精度和较好的视觉效果。 相似文献
3.
针对极化合成孔径雷达(SAR)所固有的斑点噪声很难分割出精确结果的问题,提出了一种基于图论的极化SAR图像分割方法。该方法结合极化SAR的多个极化特征, 用K均值聚类算法得到像素的初始标号,然后建立一个关于标号的能量函数并构造相应的网络,用最小割方法求取网络中全局能量函数的近似最优解,由此得到每个像素点的恰当标号,最终完成图像的准确分类。该方法与传统的分割方法相比,能够充分考虑极化SAR图像的全局信息和极化特征对图像进行精确的分割。实验结果证明,该算法具有较好的分割效果。 相似文献
4.
文章提出了一种有效的基于颜色和纹理综合特征的图像分割方法。将图像以块为单位进行划分,在YUV空间,提取块的颜色特征和纹理特征,在这种综合特征基础上,采用改进的K均值聚类法进行图像分割。该方法能自适应确定聚类中的参数,且兼顾点的位置连通关系,从而达到了较好的分割效果。 相似文献
5.
鉴于使用单一特征无法获得令人满意的分类效果以及SVM在小训练样本时具有良好的分类性能,提出了基于多种目标分解方法和SVM的极化SAR图像分类方法。首先对原始极化SAR图像使用多种目标分解方法进行处理,得到相应的分量信息,然后在极化SAR图像特征提取的基础上将SVM应用于极化SAR图像分类。通过选取不同的特征信息作为支持向量机的输入,比较其对分类性能的影响,得到最优的用于分类的特征信息组合,其中将相干分解和非相干分解的信息同时用做分类特征能够获得较好的分类效果。利用NASA/JPL实验室AIRSAR系统获取的全极化SAR数据进行实验处理,与Wishart监督分类进行对比,验证了将目标分解信息用做分类特征的有效性,同时与Wishart/H/α和模糊C-均值H/α分类方法进行对比,得到提出的方法具有良好的分类性能。 相似文献
6.
贝叶斯形式的非局部均值模型在极化SAR图像相干斑抑制中有良好的应用,在实现抑制相干斑的同时较好地保持了边缘细节和点目标.通过分析合成孔径雷达(SAR)图像多视数据的空间统计分布,结合贝叶斯形式的非局部均值模型,得出在该模型下多视与单视SAR图像中像素间相似性度量函数一致性的结论,并对该相似性度量函数进行了修正,使之满足对称性;最后针对算法全局使用一个固定滤波参数影响滤波效果的问题,提出一种根据像素间相似程度自适应选取滤波参数的方法.实验结果验证了本文算法的有效性. 相似文献
7.
Cameron分解先将极化散射矩阵分解为互易分量和非互易分量,再将互易分量进一步分解为对称分量和非对称分量,这是极化合成孔径雷达图像特征提取的有效途径。由四个分量的范数组成样本向量,运用基于统计学习理论的支持向量机设计分类器,提出了一种极化SAR图像分类算法,并对实测极化SAR数据进行分类实验。结果表明,将Cameron分解与SVM结合起来应用于极化SAR图像分类的算法是可行和有效的,通过选择不同的参数对分类结果影响很大,验证了参数选择在SVM分类器中的重要作用。 相似文献
8.
纹理是图像的重要属性,基于纹理特征检索图像是当前的研究热点,对图像的纹理进行相似性比较是进行图像检索的关键.根据纹理的特点,本文将通用的向量空间模型进行拓展,构建了一个针对簇集进行相似性匹配的模型-聚类空间模型,对图像纹理相似性进行度量,并据此实现了无需分割的多纹理图像检索.我们分别针对单纹理图像和自然图像库进进行了实验,获得的实验结果与人类视觉认知的结果一致. 相似文献
9.
10.
针对传统的k-近邻(k-nn)方法的缺点,将聚类中的K均值和分类中的k近邻算法有机结合,提出了一种改进的k-nn快速分类算法。实验表明该算法在影响分类效果不大的情况下能达到快速分类的目的。 相似文献
11.
12.
With the improvements in modern radar resolution,the Gaussian-fluctuation model based on the central limit theorem does not accurately describe the scattering echo from targets.In contrast,the heavytailed Rayleigh distribution,based on the generalized central limit theorem,performs well in modeling the synthetic aperture radar(SAR) images,whereas its application to multi-look image processing is difficult.We describe successful modeling of multilook polarimetric SAR images with the heavy-tailed Rayleigh distribution and present novel parameter estimators based on matrix log-cumulants for the heavy-tailed Rayleigh distribution including the equivalent number of looks(ENL).First,a compound variable of heavy-tailed Rayleigh distribution is divided into a product of a positive alpha-stable variable and a complex Gaussian variable.The parameter estimations of the characteristic exponent and scale parameter based on log-cumulants in a single polarization channel are then derived.Second,the matrix log-cumulants(MLCs) for full polarization in multilook images are obtained,which can be applied to estimate model parameters.Therefore,a novel ENL estimator based on MLC is presented that describes the model more precisely.Extended to all other multivariable product models,this estimator performs better than existing methods.Finally,calculations on both simulated and real data are performed that give good fits with theoretical results.Multilook processing in one image with a fixed pixel number can improve parameter estimations over single-look processing.Our heavy-tailed Rayleigh model with its parameter estimation provides a new method to analyze the multilook polarimetric SAR images for target detection and classification. 相似文献
13.
为有效地提高基于散射模型的非监督分类的分类精度,引入了Freeman三分量模型的改进模型-Yamaguchi四分量模型,并将该模型与威沙特距离模型结合起来.给出了基于四分量模型和威沙特距离的非监督分类、聚类算法及其实现流程.对AIRSAR数据集中的Flevoland图像选取了7个均匀程度不同的区域,进行了定性的、定量的实验,实验结果表明,新的分类、聚类算法能够显著的提高分类图的分辨率、更加清晰的表征地物的细节.该方法能够较大地提高均匀区域的分类精度. 相似文献
14.
15.
当前极化合成孔径雷达(SAR)图像的分类研究中,极化信息的不完全利用是影响极化SAR图像分类效果的重要原因之一。故将商空间粒度合成理论引入到极化SAR图像分类中,通过建立不同的支持向量机(SVM)分类器构建不同的商空间,从多个粒度层面实现对极化信息的综合利用。首先通过不同的极化分解方法得到不同的极化特征,分别对其建立不同的支持向量机分类器进行分类;再根据粒度合成理论对这些商空间进行融合,得到更细粒度上的改进的分类结果。最后,利用AIRSAR图像进行实验比较,算法改进后的结果在地物误分上有明显的抑制,各类别分类正确率都有所提高。 相似文献
16.
在区间值模糊集理论和Vague集理论的基础上,提出了一种新的基于Vague集相似度量的模糊分类方法,对Fisher建立的Iris数据库进行了分类实验处理,分类结果的正确率超过95%。该方法计算简单有效,具有一定的实际应用价值。 相似文献
17.
基于细节信息分类和结构相似的快速分形编码方法 总被引:1,自引:0,他引:1
针对传统分形编码中编码时间过长的问题,提出了一种细节信息分类(Detail Information Classification,DIC)与结构相似(Structure Similarity,SSIM)指标相结合的快速分形编码方法。DIC方法将图像块的内部细节信息分布状况作为分类标准对定义域块库进行分类,SSIM指标分别从亮度、对比度和结构三个方面度量值域块与定义域块之间的匹配程度。通过将DIC方法与SSIM指标结合,可以加快分类速度、减少匹配运算时间。 相似文献
18.
为提升图像自动分类算法的通用性和鲁棒性,加快算法收敛速度,针对图像分类的特点,对传统蚁群算法进行改进,引入分类蚁群模型。随机蚂蚁识别统计图像类别,构建类别表,确定聚类中心;智能蚂蚁按相应的搜索前进策略进行分类。相比基本蚁群分类算法,该算法可以在较短的时间内完成图像的自动分类。 相似文献