首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
薄荷多糖的提取工艺及其抗氧化、抗病毒活性的研究   总被引:1,自引:0,他引:1  
目的:采用正交实验法优选薄荷多糖的最佳提取工艺,对其化学成分进行分析,并对其体外抗氧化活性及抗病毒活性进行评价。方法:以多糖得率为指标,采用正交实验法优化了薄荷多糖的提取工艺。采用柱前衍生高效液相色谱法对其单糖组成进行分析,同时对其体外抗氧化及抗病毒活性进行了研究。结果:结果显示薄荷多糖的最佳提取工艺为加25倍量水,100℃提取2次,每次1 h。薄荷多糖主要含有葡萄糖、半乳糖和阿拉伯糖,其主要组分的分子量为57.2 ku和11.5 ku。体外实验结果显示薄荷多糖具有显著的DPPH自由基清除能力和还原能力,对呼吸道合胞病毒具有较强的抑制作用,IC50为281.36μg/m L。结论:研究结果为薄荷资源的开发利用提供理论依据。  相似文献   

2.
五种甘薯多糖体外抗氧化活性比较   总被引:2,自引:0,他引:2  
研究通过水提醇沉法得到五种甘薯的多糖,采用柱前衍生高效液相色谱法测定了五种甘薯多糖的单糖组成,并且比较了五种甘薯多糖的抗氧化活性,包括DPPH自由基清除能力、羟自由基清除能力及铁离子还原能力。结果表明:五种甘薯多糖的单糖组成是一致的,都是由葡萄糖、半乳糖和木糖组成,但单糖的比例存在差异。甘薯多糖都具有良好的抗氧化活性,是一种新的抗氧化物质,其中紫薯宁薯2-2对DPPH自由基及羟自由基清除能力最强;而浙薯255的铁离子还原能力最强。在一定程度上说明甘薯多糖的抗氧化活性的作用机理存在差异,这可能与多糖的单糖组成及结构等有着密切的关系。  相似文献   

3.
为探究火麻籽粕多酚的提取工艺及评价其抗氧化活性,在单因素试验基础上,通过响应面试验优化火麻籽粕中多酚的微波辅助提取工艺,并从DPPH自由基清除能力、羟基自由基清除能力、超氧阴离子自由基清除能力和铁离子还原能力4个方面来评价其抗氧化活性。结果表明,最佳提取工艺条件为乙醇体积分数58%、微波功率311 W、微波时间3.2 min、微波温度50℃、液料比50∶1(mL/g),在此条件下火麻籽粕多酚实际提取量为5.86 mg/g,与理论提取量相对误差仅为0.34%。试验所选浓度范围内,相较于VC,火麻籽粕多酚对DPPH自由基、羟基自由基、超氧阴离子自由基的清除能力更强,同时还具有较强的还原能力。  相似文献   

4.
研究优化甜菜树多糖的提取工艺,并测定其多糖的抗氧化性。采用苯酚-浓硫酸法测定甜菜树多糖的含量,通过正交试验优化了多糖的提取工艺,以羟基自由基(·OH)、1,1-苯基-2-苦基肼自由基(DPPH·)和超氧阴离子自由基(O2-·)清除能力为指标,探究了甜菜树多糖的体外抗氧化活性。结果表明:多糖的最佳提取工艺参数为料液比1:50 g/m L、超声时间30 min、超声温度40℃,在此条件下多糖的平均提取率为2.70%。体外抗氧化活性结果表明,多糖对羟基自由基、DPPH自由基和超氧阴离子自由基的清除率可分别达到78.99%、75.65%和87.40%,说明多糖对·OH、DPPH·和O_2~-·有较强的清除能力。  相似文献   

5.
以白背毛木耳为原料,利用传统水提法提取白背毛木耳多糖(polysaccharides from Auricularia polytricha,APPs),分别对传统热风干燥多糖(APPs-H)、真空干燥多糖(APPs-V)和冷冻干燥多糖(APPs-F)的化学组成和抗氧化活性进行研究。结果表明,白背毛木耳多糖为含有少量的蛋白质的酸性多糖,不同干燥方法将会影响其单糖组成和糖醛酸含量。APPs-H,APPs-V和APPs-F具有较强的清除DPPH自由基、羟基自由基、超氧阴离子自由基和亚硝基自由基的能力和还原力,在一定浓度范围内,多糖与抗氧化活性及还原能力之间呈正相关关系,干燥方法对白背毛木耳多糖抗氧化活性造成不同影响,其中APPs-F抗氧化活性最强,其次是APPs-V和APPs-H,冷冻干燥是制备APPs适宜的干燥方法。  相似文献   

6.
以艳山姜为试验原料,采用响应面法优化艳山姜多糖提取工艺,并研究艳山姜多糖的抗氧化活性。建立以葡萄糖为对照品,紫外分光光度法测定多糖含量的定量分析方法。在单因素试验基础上,以提取时间、超声功率和液料比为自变量,多糖得率为因变量,运用Box-Behnken 设计-响应面优化艳山姜多糖的提取工艺。通过对DPPH 自由基、超氧阴离子自由基、羟基自由基清除作用研究艳山姜多糖的抗氧化活性。结果表明,艳山姜多糖最佳提取工艺条件为:提取时间35 min、超声功率70 W、液料比40∶1(mL/g),在此条件下多糖得率为5.37%。艳山姜多糖对DPPH 自由基、超氧阴离子自由基和羟基自由基有较强的清除能力,多糖浓度越高,抗氧化活性越强。  相似文献   

7.
采用超声辅助法提取虫草花多糖,在单因素试验的基础上,通过L9(34)正交试验优化了虫草花多糖提取工艺;并就虫草花多糖对羟基自由基(·OH)、1,1-苯基-2-苦肼基(DPPH)自由基的清除作用和还原能力进行研究。结果表明:虫草花多糖最佳提取工艺条件为超声功率300 W,液料比30∶1(mL∶g),超声时间30 min,超声温度45 ℃。在此优化条件下,多糖的平均提取率为3.88%。抗氧化活性试验结果表明,虫草花多糖质量浓度在2.9~14.7 mg/L范围内,随着虫草花多糖质量浓度的增加,其OH、DPPH自由基清除能力及还原能力均逐渐增强,虫草花多糖质量浓度为14.7 mg/L时,对·OH和DPPH·清除率分别达到44.39%和56.34%,说明虫草花多糖具有较强的抗氧化活性。  相似文献   

8.
水提法提取核桃壳多糖及其抗氧化研究   总被引:1,自引:0,他引:1  
对核桃壳多糖的提取工艺及其抗氧化活性进行了研究。结果表明,提取核桃壳多糖的最优工艺条件:料液比1∶20(g/mL)、提取温度70℃、提取时间3 h、提取次数3次。核桃壳多糖具有较强的还原力,对羟基自由基和DPPH自由基均表现出较好的清除能力,且在一定范围内对二者的清除作用呈现良好的量效关系。  相似文献   

9.
从铁皮石斛中提取多糖。以铁皮石斛多糖提取得率为评价指标,在单因素试验的基础上通过正交试验优化提取条件,得到最佳提取条件:提取时间2h,料液比1∶80,提取温度80℃,提取次数3次。此条件下铁皮石斛多糖提取得率为19.01%±0.49%。通过测定铁皮石斛多糖对1,1-二苯基-2-苦肼基(DPPH)、超氧阴离子自由基(O~(2-))和羟基自由基(-OH)的清除能力及铁皮石斛多糖对三价铁的还原能力,对铁皮石斛多糖进行抗氧化活性研究。结果表明,铁皮石斛多糖对三种自由基均有较高的清除能力,且清除能力随多糖浓度的增加而增大,在多糖浓度为3mg/mL时,自由基清除率分别达到38.83%、56.25%、56.58%。同时铁皮石斛多糖具有较高的还原能力。铁皮石斛多糖具有较强的抗氧化活性。  相似文献   

10.
葱白多糖提取工艺优化及体外抗氧化活性研究   总被引:1,自引:0,他引:1  
通过响应面分析,对水提法提取葱白多糖工艺进行了优化实验,并采用清除·OH(羟基)自由基模型、O2-·(超氧阴离子)自由基模型和DPPH(1,1-二苯基苦基苯肼)自由基模型评价了葱白多糖的抗氧化能力,并与抗坏血酸进行了对比.实验结果表明:各因素对多糖提取得率的影响程度由大到小依次为:提取温度>料液比>提取时间,最佳提取工艺条件为:提取温度83.35℃,料液比1:32.7,提取时间2.57h/次.葱白多糖具有较强清除·OH自由基、DPPH自由基作用,并与浓度呈一定依赖关系.葱白多糖清除O2-·自由基的能力较弱,清除率与多糖浓度的关系不明显.  相似文献   

11.
青蛤多糖的提取工艺优化及其抗氧化活性   总被引:2,自引:0,他引:2  
研究热水浸提青蛤多糖的提取工艺并测定青蛤多糖的体外抗氧化活性。采用单因素试验和正交试验设计优化提取工艺,优化的提取工艺为:提取温度95℃,提取时间为4 h,液料比10∶1(m L/g),提取次数2次,青蛤多糖的得率为(3.41±0.04)%。对脱蛋白后的青蛤多糖体外抗氧化活性研究表明,其具有较强的和浓度依赖的还原能力和总抗氧化能力,对DPPH自由基、羟基自由基和超氧阴离子自由基的清除活性均随浓度升高而增大,显示青蛤多糖具有显著的体外抗氧化活性。  相似文献   

12.
通过单因素试验及Box-Behnken设计,获得了热水浸提益智仁多糖的最佳工艺;以清除1,1-二苯基-2-三硝基苯肼(DPPH)自由基能力、还原力、清除羟基自由基能力和螯合铁离子能力为指标,评价了益智仁多糖的抗氧化活性。结果表明:热水浸提益智仁多糖的最佳工艺条件为液料比20∶1(mL∶g)、浸提温度94℃、浸提时间110 min,在此条件下多糖得率为7.71%。益智仁多糖具有较好的抗氧化活性,清除自由基能力、还原力和螯合铁离子能力均表现出一定的浓度依赖性;益智仁多糖清除DPPH自由基、清除羟基自由基和螯合铁离子能力的半数有效浓度(EC50)分别为(0.21±0.02)、(1.34±0.03)和(1.65±0.1)g/L。  相似文献   

13.
目的:研究西洋参花多糖闪式提取的最佳工艺条件及抗氧化活性。方法:以西洋参花为原料,考察提取电压、液料比、提取时间对西洋参花多糖得率的影响,采用响应面法优化西洋参花多糖闪式提取工艺。通过测定西洋参花多糖对DPPH自由基和羟基自由基的清除作用及总还原力,考察西洋参花多糖的抗氧化活性。结果:通过实验得到西洋参花多糖的最佳提取工艺条件为:提取电压:130 V,液料比:30:1 mL/g,提取时间:100 s。在此条件下,西洋参花多糖得率为11.12%±0.23%,与模型预测值相当;西洋参花多糖体外抗氧化显示其对DPPH自由基和羟基自由基清除率的IC50值分别为1.34、1.42 mg/mL,且具有一定还原力。表明西洋参花具有较强的抗氧化活性,且随着多糖浓度的增加,抗氧化活性不断增强。结论:本实验得到的提取工艺条件具有可行性,可用于西洋参花多糖的提取。西洋参花多糖具有较好的抗氧化活性。本研究可为西洋参花的开发利用提供理论依据。  相似文献   

14.
以大果木姜子为试验原料,采用响应面法优化大果木姜子多糖提取工艺,并研究大果木姜子多糖的抗氧化活性。建立以葡萄糖为对照品,紫外分光光度法测定多糖含量的定量分析方法。在单因素试验基础上,以超声时间、提取功率和液料比为自变量,多糖得率为因变量,运用Box-Behnken设计优化大果木姜子多糖的提取工艺。通过大果木姜子多糖对DPPH自由基、超氧阴离子自由基、羟基自由基清除作用,研究其抗氧化活性。结果表明,大果木姜子多糖最佳提取工艺为超声时间35 min、提取功率80 W、液料比40∶1(mL/g),多糖得率为5.92%。大果木姜子多糖对DPPH自由基、超氧阴离子自由基和羟基自由基均有较强的清除能力,在一定浓度范围内,多糖浓度越高,抗氧化活性越强。  相似文献   

15.
为研究不同干燥方法对淫羊藿多糖化学性质及抗氧化活性的影响,以粗毛淫羊藿为材料制备多糖。测定热风干燥多糖(EAP-H)、真空干燥多糖(EAP-V)和真空冷冻干燥多糖(EAP-F)的中性糖、糖醛酸和蛋白质含量,单糖组成及DPPH自由基、羟基自由基和超氧阴离子的清除能力。结果表明:淫羊藿多糖为含有少量蛋白质的酸性多糖,不同干燥方法将会影响其单糖组成和糖醛酸含量;EAP-F糖醛酸含量最高并具有最强的DPPH自由基、羟基自由基和超氧阴离子清除能力。因此,真空冷冻干燥是制备淫羊藿多糖的最佳干燥方法。  相似文献   

16.
通过响应面试验设计,获得超声提取黑果腺肋花楸叶多糖的最佳工艺条件,通过TCA法将粗多糖中的蛋白成分除去后得到精制多糖;以清除铁还原力、1,1-二苯基-2-三硝基苯肼(DPPH)自由基能力和清除羟自由基能力为指标,评价黑果腺肋花楸叶多糖的抗氧化活性。结果表明,超声提取黑果腺肋花楸叶多糖的最佳工艺条件为:超声温度67℃,超声时间53 min,超声功率150W,料液比1∶30(g∶mL)在此条件下多糖得率为5.01%。黑果腺肋花楸叶多糖具有较好的抗氧化活性,铁还原力、清除DPPH自由基能力和清除羟自由基能力均表现出一定的质量浓度依赖性;黑果腺肋花楸叶多糖多糖铁还原力、清除DPPH自由基和清除羟自由基能力的半数有效质量浓度(EC50)分别为0.623g/L、0.473g/L和0.147g/L。  相似文献   

17.
试验以青钱柳叶为原料,研究青钱柳多糖的超高压提取工艺,对提取的青钱柳粗多糖进行抗氧化活性试验。采用单因素及正交试验对青钱柳多糖的超高压提取工艺进行优化,结果显示,青钱柳多糖最佳提取条件为:料液比1︰25(g/mL)、提取温度30℃、提取压力500 MPa。在此条件下,青钱柳多糖得率最高,为3.70%。将青钱柳粗多糖进行清除DPPH自由基、清除羟基自由基试验,以抗坏血酸(VC)为对照,测定青钱柳叶粗多糖的体外抗氧化能力。结果表明,青钱柳叶粗多糖清除DPPH自由基效果较好且较对照组浓度低,最高清除率为93.0%,而清除羟基自由基效果低于对照。  相似文献   

18.
洋甘菊多糖超声提取工艺优化及清除自由基能力研究   总被引:1,自引:0,他引:1  
以水作为提取溶剂,利用洋甘菊多糖得率为指标,通过单因素试验和响应面设计试验优选超声辅助提取洋甘菊多糖最优工艺;通过测定洋甘菊多糖清除羟基自由基、DPPH的能力来评价其抗氧化活性。研究结果表明:洋甘菊多糖超声提取的最优条件为液固比为82.76 mL/g,超声时间为78.83 min,超声功率为1036.95 W,在此条件下,洋甘菊多糖得率理论值为11.20%。洋甘菊多糖对羟基、DPPH自由基均有较显著的清除作用,清除能力随着多糖质量浓度的增大而增大,表明洋甘菊多糖具有较好的抗氧化作用。  相似文献   

19.
通过水提法探讨蕨麻多糖适宜的提取工艺,并研究其抗氧化活性。考察料液比、浸提温度、浸提时间对蕨麻多糖含量的影响,在单因素试验的基础上做L9(34)正交试验优化提取工艺参数。通过测定蕨麻多糖总抗氧化能力,清除DPPH、·OH、O2-·自由基的能力来评价其抗氧化活性。研究结果表明,蕨麻多糖适宜的提取工艺参数是:浸提温度90℃、浸提时间2 h、料液比1∶30。在此条件下蕨麻多糖含量为2.54%。蕨麻多糖具有较好的抗氧化能力,对DPPH、·OH、O2-·自由基的IC50分别为5.47,2.62,27.53 mg/mL。本研究结果为蕨麻开发利用奠定理论基础。  相似文献   

20.
洋葱多糖的提取及其抗氧化活性研究   总被引:14,自引:2,他引:14  
对洋葱多糖提取的最适工艺条件、洋葱多糖脱蛋白方法及其抗氧化活性进行了研究。结果表明,提取洋葱多糖的工艺条件为:提取时间5h,提取温度80℃,料液比1∶25。洋葱多糖的最佳脱蛋白方法为胰蛋白酶+Sevag法。洋葱多糖具有较强的还原力,对超氧阴离子自由基、羟基自由基均表现出较好的清除能力,且在一定范围内对二者的清除作用呈现良好的量效关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号