首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘凯  周芳  罗宏  林修洲  陈雪丹 《表面技术》2016,45(4):183-188
目的 提高2205双相不锈钢的硬度和耐蚀性能.方法 2205双相不锈钢采用固体包埋粉末渗硼,于马沸炉中分别在830、860、890℃下保温5 h;在860℃下保温3、5、7 h,随炉冷却到室温.用金相显微镜、扫描电镜观察渗硼层的形貌和测定渗硼层的厚度,用维氏硬度计测定渗硼层的硬度,用纳米压痕仪测定渗硼层不同深度的硬度,用X射线衍射仪分析渗硼层的物相组成,评定渗硼层与基体的结合力,做不同介质下耐蚀性对比试验.结果 渗硼层与基体结合牢固,破坏等级评为一级,渗硼层主要由Fe2 B单相组成.在860℃下保温不同时间,渗硼层的厚度及硬度均随时间的增长而逐渐增大;在不同温度下保温5 h时,渗硼层的厚度及硬度随温度的升高而逐渐增大.渗硼后试样在质量分数都为10%的HCl和NaCl溶液中耐蚀性提高,在质量分数均为10%的H2 SO4、NaOH和HNO3溶液中耐蚀性变差.结论 固体粉末包埋法渗硼工艺改善了2205双相不锈钢的表面组织和性能,有效提高了其硬度及耐蚀性.  相似文献   

2.
研究了20钢在不同渗硼温度和不同渗硼时间下对渗硼层组织和性能的影响。用金相显微镜和扫描电镜观察了渗硼层的形貌,测定了渗硼层的厚度;用维氏硬度计测定了渗硼层的硬度;用纳米压痕仪测定了渗硼层不同深度的硬度;评定了渗硼层与基体的结合力;采用X射线衍射仪分析了渗硼层的物相组成;在不同溶液中进行了渗硼层耐蚀性试验。结果表明:渗硼层厚度均匀,呈齿状结构,与基体结合牢固,渗硼层主要由Fe_2B组成。在860℃下保温不同时间,渗硼层的厚度随时间的增长而增大;在不同温度下保温5h时,渗硼层的厚度随温度的升高而逐渐增大。渗硼层表层硬度稍低,然后升高达到最大值,在渗层与过渡区的交界处急剧下降。除HNO_3外,渗硼处理后的试样在HCl、H_2SO_4、NaCl和NaOH溶液中的耐蚀性均比未渗硼的试样好。  相似文献   

3.
研究了42Cr Mo钢在不同锌铝共渗温度、共渗时间条件下共渗层的组织及性能。用金相显微镜、扫描电镜观察了锌铝共渗层的形貌及厚度;用X射线衍射仪分析了共渗层的物相组成;对比了纯锌渗层与共渗层耐蚀性。结果表明:在400℃下保温不同时间,渗层的厚度随时间的增长而逐渐增加;在不同温度下保温3 h时,渗层的厚度随温度的升高而逐渐增大;锌铝共渗的试样比单纯渗锌试样的耐腐蚀性能好,渗锌件出红锈时间为50 h,渗锌铝件为127 h,有效延长了耐盐雾腐蚀时间。  相似文献   

4.
研究了渗硼温度、保温时间、供硼剂含量和稀土氧化铈含量对40Cr钢渗层厚度及组织和硬度的影响。结果表明,随渗硼温度升高、保温时间延长,40Cr钢表面渗层厚度增大;随碳化硼加入量的增加,渗层厚度在渗硼剂中含1%B4C和5%B4C时出现两个极大值点;适量的稀土氧化铈可以促进硼的渗入,过多的稀土氧化铈的加入反而不利于渗层厚度的增大。稀土氧化铈的加入能够改善渗层的组织,渗硼层硬度亦有所提高。  相似文献   

5.
45钢渗硼工艺对渗层组织与性能的影响   总被引:3,自引:0,他引:3  
研究了渗硼温度、保温时间和渗硼剂配方对45钢渗硼层组织和性能的影响.结果表明:在给定实验条件下,渗硼层组织致密,硼化物呈针齿状楔入基体,与基体结合牢固;渗硼层厚度随渗硼温度的升高、保温时间的延长而增加.相比而言,温度对渗硼层厚度的影响大于时间的影响;渗硼层中FeB相使表面硬度显著提高:渗硼层抗盐酸、硫酸、氢氧化钠腐蚀性优良.  相似文献   

6.
以Cr12冷作模具钢轧辊为研究对象,通过固体渗硼方法在其表面进行渗硼研究。使用单一变量法研究了渗硼剂类型、渗硼处理温度和处理时间对渗层厚度及性能的影响。同时借助蔡司金相显微镜对渗层组织进行分析,利用环-块摩擦试验机对渗硼前后的试样进行磨损实验。实验结果表明:使用硼铁型渗硼剂得到的渗层较厚,渗层较为平整。在渗硼实验过程中,最佳热处理参数为:渗硼温度950℃,保温时间5 h。在本次实验所选取的热处理参数范围内,渗硼层厚度随温度的升高和保温时间的延长而增加。试样经过渗硼处理后,表面形成的渗硼层增加了表面硬度,提高了表面耐磨性。  相似文献   

7.
研究了淬火处理对45钢表面硼铬稀土低温共渗的影响,淬火处理保温时间分别为20、30和40 min,共渗工艺分别为600℃×6 h和650℃×6 h。利用电子扫描电镜观察共渗层形貌特征,利用电子显微硬度计测定共渗层的显微硬度。结果表明,经淬火处理的试样共渗层厚度明显增加,不具有明显的梳齿状,组织致密均匀;共渗温度为600℃时,共渗层厚度随淬火处理过程中保温时间延长先增加后减小,分别增加了45.5%、72.7%、18.2%;共渗温度为650℃时,共渗层厚度具有同样变化趋势,分别增加了50%、62.5%、18.8%;淬火处理试样与未淬火处理试样共渗层的硬度分布趋势一致,从最外层开始,先增大后减小。  相似文献   

8.
TiAl基合金的离子渗碳研究   总被引:3,自引:0,他引:3  
试验研究了钛铝基合金离子渗碳后的渗层组织结构、渗碳温度和时间对渗层厚度、表面硬度的影响.结果表明,钛铝基合金经离子渗碳处理后,渗层由碳化物层与过渡层组成;提高渗碳温度及延长保温时间将使渗层厚度逐渐增加:与未处理试样相比,表面硬度显著提高.  相似文献   

9.
研究了1Cr13钢在不同渗硼温度下保温5 h对渗硼层组织和性能的影响。用扫描电镜观察了1Cr13钢渗硼后的断面形貌;用XRD分析了渗硼层的物相;用纳米压痕仪测量了渗硼层的硬度。结果表明:渗硼层不呈现梳齿形状,当渗硼温度较高时,渗硼层中明显存在疏松、孔洞;渗硼层由Fe2B相构成;在不同温度下保温5 h,渗硼层深度和硬度都随温度的升高而增加;渗硼层与基体结合良好。  相似文献   

10.
在800℃粉末法渗硼过程中对中碳45钢试样和渗剂施加交流电场,研究电场频率对粉末法渗硼的影响规律和作用机制。对渗硼保温过程中试样的温度、渗硼层显微组织、相结构、厚度及显微硬度分布等进行观测分析。结果表明:交流电场使试样温度高于渗硼保温炉温,电场电流恒定时,随频率从20Hz增至400Hz,试样温升先降低后升高,硼化物层及增碳区厚度均先减小后增加;当电场电流为3A时,硼化物层为单相Fe2B;当电场电流≤2A时,随频率增加,硼化物层由FeB+Fe2B双相变为单相Fe2B,渗层表层硬度降低、硬度分布曲线趋于平缓。分析认为,电场频率通过综合影响渗剂反应、活性硼原子及含硼活性基团在试样表面的吸附和试样内原子的扩散来影响渗硼。  相似文献   

11.
采用固体渗硼工艺对65Mn钢进行渗硼处理,并借助光学显微镜、X射线衍射仪、电子探针及维氏硬度计等手段系统研究了渗硼温度(800~1000 ℃)和渗硼保温时间(2~8 h)对65Mn钢渗硼层厚度、微观组织和硬度的影响规律以及渗硼层的生长动力学。结果表明,随着渗硼温度的升高或渗硼时间的延长,渗硼层的厚度不断增大,但当渗硼温度超过900 ℃时,渗硼层中黑色孔洞的数量、大小以及距离渗硼层表面的深度都逐渐增大。65Mn钢渗硼层都由Fe2B柱状晶,以及位于Fe2B柱状晶生长前沿及晶粒间的Fe3(B,C)相、二元铁硅化合物和三元铁碳硅化合物组成,其维氏硬度(800~1590 HV0.05)远大于65Mn钢基体的硬度(238 HV0.05)。由于硬度较低的Fe3(B,C)相和富硅相分布于高硬度的Fe2B柱状晶晶粒之间,导致渗硼层的硬度并不随离渗硼层表面距离的增加而单调减小。渗硼层厚度的平方与渗硼时间呈线性关系,B原子在65Mn钢渗硼层中的扩散激活能为220.96 kJ/mol。  相似文献   

12.
在粉末渗剂和45钢试样上施加4 A电流的直流电场,于800℃进行直流电场增强渗硼。以X射线衍射、光学显微观察和显微硬度测试等手段,分析位于电场不同位置试样渗硼层的相结构、显微组织、厚度与及显微硬度分布。结果表明:电场渗硼的渗层组织形态基本与常规渗硼的一致,以锯齿状楔入基体,但其相结构、显微硬度分布、厚度等与试样位置有关;朝正极面的渗层一般由Fe B和Fe2B两相组成,渗层较厚且较硬;朝负极面的渗层主要由Fe2B组成,随渗硼时间延长Fe B先增加,后减少至消失;渗硼时间等于及超过2 h,渗层下出现明显的过渡区;渗层厚度与保温时间关系曲线呈抛物线特征。从直流电场对渗剂化学反应、含硼活性基团在气氛中的扩散及硼在试样内扩散的影响等方面进行了分析。  相似文献   

13.
目的 通过固体粉末渗硼法直接烧结铁基粉末冶金材料,制备具有渗硼层的试样。方法 采用固体渗硼工艺对铁基粉末冶金材料在1123、1223、1323 K温度下渗硼处理3、5、7、10 h,采用光学显微镜及扫描电镜(SEM)观察了渗硼层的形貌,测定了渗硼层的厚度。用X射线衍射仪分析了渗硼层的物相组成,用摩擦磨损试验评估渗硼层的耐磨性,采用Rockwell-C粘附性试验评估渗硼层与基体的粘合强度质量。对渗层的生长动力学曲线进行拟合,得出渗层动力学曲线和厚度等值线图。结果 试样的渗硼层厚度为35~ 183 μm,1323 K条件下获得双相渗硼层(Fe2B+FeB),1123 K及1223 K条件下获得单相渗硼层Fe2B。试样在1223 K温度下渗硼处理5 h获得的渗硼层的耐磨性最佳,其粘合强度质量根据规范通过HF3等级认可。该试验中B元素的扩散激活能为164 kJ/mol。结论 烧结温度和渗硼时间与渗层厚度关系密切,渗硼时间与渗层厚度的关系呈现出抛物线关系。厚度值的平方与渗硼时间符合阿瑞纽斯(Arrhenius)公式呈线性关系。渗硼层的显微硬度显著高于基体硬度,随时间的增加,渗层中出现较多的孔洞与疏松,渗硼层形状由明显的梳齿状逐渐变成不太明显的梳齿状,此情况在高温下更加明显。  相似文献   

14.
采用固体颗粒渗硼技术对Inconel 625合金进行表面处理,研究了不同渗硼温度对渗硼层组织结构、相成分、硬度和耐磨性能的影响。结果表明:Inconel 625镍基合金在900℃渗硼处理后,渗层主要由镍硼化合物相和少量铬硼化合物相组成,试样表面硬度增大,耐磨性能提高。950℃渗硼后的渗层由镍硼相和铬硼相组成,表面硬度达到最大值1239.1 HV0.3,耐磨性能最好。1000℃渗硼后试样在镍硼相和铬硼相的外侧生成硅化物Si31Ni12,造成表面硬度下降,耐磨性能变差。综合比较,渗硼温度在950℃时,Inconel 625镍基合金试样的表面硬度最高,耐磨性能最优。  相似文献   

15.
对AISI420不锈钢进行低温等离子体渗氮处理,采用金相观察、X射线分析等手段对渗层组织结构进行表征,利用显微硬度仪以及腐蚀极化曲线等对渗层硬度和耐蚀性能进行测试。结果表明,不锈钢表面渗层组织均匀,渗层厚度随着温度和时间的增加而增加,渗层表面主要由Fe_4N和少量的过饱和含氮α相组成。渗氮后,不锈钢硬度明显增加,且随着时间的延长,渗层硬度升高;渗氮4 h和8 h后的试样耐蚀性均略有下降,但处理12 h后的试样耐蚀性升高,且经渗氮处理后,不锈钢表面形成钝化膜的半导体特性由未处理不锈钢的p型转变为n型。  相似文献   

16.
周武  王敏  赵同新  卢军  杨旗 《金属热处理》2022,47(11):147-151
采用离子渗氮工艺对一种Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢进行表面改性处理。利用光学显微镜(OM)、X射线衍射(XRD)、电子探针显微分析仪(EPMA)和维氏硬度计对不同离子渗氮温度下渗层的组织和性能进行了研究。结果表明,Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢经430~520 ℃离子渗氮处理10 h后,试样表面均形成一层厚度均匀的渗氮层,表面硬度显著增大。随着离子渗氮温度的升高,渗层厚度增大,520 ℃渗氮时渗层厚度达到78 μm。当渗氮温度为430 ℃时,渗层表面主要由γN+CrN+γ′-Fe4N相组成;当渗氮温度升高至520 ℃时,渗层表面主要由γ′-Fe4N+CrN+ε-Fe2-3N相组成。在3种渗氮温度下,渗层中均有CrN析出,导致渗层耐蚀性低于基体组织。  相似文献   

17.
采用粒状渗剂分别在渗硼硅温度为850、900、950℃,保温时间为2、8 h的工艺参数下对纯镍表面进行固体渗硼硅处理。用光学显微镜(OM)对渗层横断面进行了显微组织观察,用显微硬度计测试渗层的硬度分布,用M200型磨损试验机研究未渗硼硅和渗硼硅纯镍的耐磨性,采用循环氧化试验研究未渗硼硅和渗硼硅纯镍的抗高温氧化性。结果表明,纯镍渗硼硅后,渗层为硅化物层和硼化物层,且硅化物和硼化物的显微硬度都大于基体硬度,渗层厚度随着渗硼硅时间和温度的增加而增加,其范围约为36~237?m,用X射线衍射仪(XRD)分析出渗层为硼化物层(Ni2B)和硅化物层(Ni3Si、Ni5Si2和Ni2Si)。磨损试验结果表明渗硼硅后试样的耐磨性得到提高。抗高温氧化试验结果显示未渗硼硅纯镍试样抗高温氧化性优于渗硼硅后纯镍试样。  相似文献   

18.
钟厉  马晨阳  韩西  罗明宝 《表面技术》2017,46(2):154-158
目的探索循环离子渗氮与常规恒温离子渗氮技术的工艺效果。方法先对试样进行调质处理,分组进行离子渗氮,固定氨气和乙醇的流量,改变渗氮时间和渗氮温度两种工艺参数及渗氮工艺,分别测定渗氮后各试样的表面硬度及渗层厚度,观察其金相组织,并分析每组试样渗氮层的性能。结果循环离子渗氮530 6 h℃试样的表面硬度最高,随着渗氮温度的升高和渗氮时间的延长,试样的表面硬度增加,但是当温度超过530℃、时间超过6 h后,试样的表面硬度反而降低。循环渗氮550 10 h℃试样的渗层厚度最厚,随着渗氮温度的升高和渗氮时间的增加,试样的渗层厚度变厚,但时间超过6 h后,渗层厚度的增加较缓慢,6、8、10 h试样的渗层厚度差别不大。相同的渗氮温度下,循环渗氮6 h的试样的渗层厚度基本与常规恒温渗氮10 h试样的渗层厚度一样,相同渗氮时间内,循环渗氮510℃的试样的表面硬度高于恒温渗氮550℃试样的表面硬度,且两者的渗层厚度相差不多。结论循环离子渗氮工艺优于常规的恒温离子渗氮,循环离子渗氮550 8 h℃试样的综合性能最好。  相似文献   

19.
低温离子渗硫工艺优化   总被引:3,自引:0,他引:3  
将45钢试块在不同的渗硫温度和保温时间下进行了离子渗硫处理,并在SKODA-SAVIN快速磨损试验机上测定了各试块的相对耐磨性。根据渗硫工艺和渗层厚度的关系,讨论了渗层厚度对相对耐磨性的影响,从而得出了渗硫工艺和相对耐磨性的关系。随着渗硫温度的升高和保温时间的延长,渗层逐渐加厚,相对耐磨性也逐渐增大,当达到最一佳厚度时,相对耐磨性最高,之后随渗层厚度的增大而变小。最佳的渗硫工艺为240℃下渗硫保温2-3h。  相似文献   

20.
深层QPQ工艺参数对3Cr13钢渗层组织的影响   总被引:1,自引:0,他引:1  
蔡文雯  罗德福 《热加工工艺》2012,41(24):176-179
选用3Cr13马氏体不锈钢作为实验材料,利用深层QPQ盐浴复合处理处理技术,研究氮化温度、氮化时间和氰酸根浓度对QPQ复合处理后的渗层组织的影响.运用显微硬度计检测渗层的厚度和显微硬度值的变化,运用金相显微镜观察氮化后试样渗层的显微组织,检测化合物层的厚度和质量.结果表明:随氮化温度的升高或氮化时间的延长渗层深度增加;经630℃×2h氮化可形成深度高达97 μm的渗层组织;随氮化温度的升高,试样的表面硬度值在600℃后呈下降趋势,有疏松层的形成;氰酸根浓度对渗层的厚度影响显著,特别体现在扩散层的厚度上.而对试样表面硬度影响很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号