首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

2.
《Journal of dairy science》2023,106(9):6060-6079
The aim of this study was to evaluate the inclusion of alfalfa grazing during 8 h continuous or partitioned in 2 separated sessions of 4 h after each milking, on nutrient intake, digestibility, ruminal fermentation, feeding behavior, milk production, milk composition, and milk fatty acid profile, in late-lactation cows fed a partial mixed ration (PMR). Twelve dairy cows (193 ± 83 d in milk, 584 ± 71 kg of body weight) were housed in individual outdoor pens and assigned to treatments according to a 3 × 3 Latin square design replicated 4 times. The treatments were as follows: (1) control (T0), cows were fed a total mixed ration (TMR) provided ad libitum 20.0% crude protein (CP), 32.2% neutral detergent fiber (NDF); (2) fed a diet combining a PMR which had the same ingredient composition as the TMR (60% of ad libitum intake) + 1 session of 8 h of pasture (T8), continuous grazing alfalfa (Medicago sativa; 20.6% CP, 35.8% NDF) after the p.m. milking; and (3) PMR (60% of ad libitum intake) + 2 daily sessions of 4 h of access to pasture after each milking (T4+4). The experiment lasted 57 d and was divided into 3 periods of 19 d each. The first 12 d of each period was used for diet adaptation, and the last 7 d was used for data collection. No differences among treatments were observed for any of the productive variables, feeding efficiency, or purine derivatives excretion. Cows in T0 had greater intake and apparent digestibility of dry matter, organic matter, and nonfibrous carbohydrates compared with T4+4 and T8. Compared with T0, alfalfa grazing increased the concentration of C18:1 trans-11 and decreased those of C16:0 and C17:0 in milk fat. Cows in T4+4 consumed 1.1 more kg DM/d of alfalfa and N provided by alfalfa in the diet was 3 percentage points higher compared with T8 cows (266 vs. 229 g/d, respectively). In addition, T4+4 cows had a greater daily range of ruminal pH than T8 (0.73 vs. 0.93), and the highest concentrations of NH3-N were recorded during the a.m. grazing session while in T8 cows it occurred during the night. In conclusion, including 8 h of alfalfa grazing in T8 and T4+4 treatments allowed the substitution between 35.8 and 38.7% of the total dry matter intake (DMI) of a PMR (with a similar CP concentration to alfalfa) for pasture, maintaining milk solids production and increasing the C18:1 trans-11 of milk fat compared with a TMR in mid late–lactation cows. In an herbage plus PMR diet, splitting the 1 continuous grazing session of 8 h into 2 sessions of 4 h increased the proportion of energy and N provided by alfalfa pasture and reduced PMR intake, without modifying the total nutrient intake or productive performance of cows.  相似文献   

3.
The purpose of this experiment was to determine the effects of feeding increasing levels of fresh forage (FF) as a proportion of total dry matter intake (DMI) on nutrient intake, rumen digestion, nutrient utilization, and productive performance of total mixed ration (TMR)-fed cows. Twelve dairy cows (90 ± 22 d in milk, 523 ± 88 kg of body weight, 7,908 ± 719 kg of milk production in the previous lactation) were housed in individual tiestalls and assigned to treatments according to a 3 × 3 Latin square design replicated 4 times. Treatments were 100% TMR (T100), 75% TMR plus 25% FF (T75), and 50% TMR plus 50% FF (T50). The experiment lasted 60 d, divided into 3 periods of 20 d each; the first 12 d of each period were used for diet adaptation and the last 8 d for data collection. The TMR (18.1% crude protein, 24.6% acid detergent fiber) and FF (Lolium multiflorum; 15.1% crude protein, 24.1% acid detergent fiber) were prepared and cut daily and offered to each cow individually. The highest DMI was reached in T100 and T75, which was reflected in greater intake of the different nutrients than T50. No differences were detected in the apparent total digestibility of the nutrients, mean ruminal pH, and total volatile fatty acid concentrations among treatments. Cows in T50 resulted in the lowest ruminal N-NH3 concentration and the lowest microbial N flow to the duodenum. Milk yield was 8.5% higher from cows in T100 and T75 compared with T50, but we observed no differences for milk fat or milk protein yield among treatments. Milk fat of cows fed T50 had 8% more unsaturated fatty acids (FA) than that of cows fed T100, mostly because of a higher content of monounsaturated FA. Additionally, cows in T50 had a higher concentration of linoleic acid, vaccenic acid, and rumenic acid than T100. Meanwhile, the concentration of linoleic acid and vaccenic acid in cows fed T75 was higher than T100. The milk fat of the cows fed T50 and T75 had a lower n-6:n-3 ratio than T100. We concluded that including up to 29% of FF in the total DMI in combination with a TMR did not affect the intake or digestion of nutrients or the productive response in dairy cows and resulted in a higher concentration of desirable FA from a consumer's perspective.  相似文献   

4.
《Journal of dairy science》2021,104(11):11686-11698
This study was conducted to examine the effect of method of diet delivery to dairy cows on enteric CH4 emission, milk production, rumen fermentation, nutrient digestion, N excretion, and manure CH4 production potential. Sixteen lactating cows were used in a crossover design (35-d period) and fed ad libitum twice daily a diet [52:48, forage:concentrate ratio; dry matter (DM) basis] provided as forages and concentrates separately (CF) or as a total mixed ration (TMR). For the CF treatment, concentrates were offered first followed by mixed forages 45 min afterward. Method of diet delivery had no effect on DM intake, but neutral detergent fiber (NDF) intake was greater when the diet was delivered as TMR as compared with CF. Apparent total-tract digestibility of DM, crude protein, and gross energy was slightly (1 percentage unit) lower when the diet was offered as TMR than when offered as CF. In contrast, NDF digestibility was greater when the cows were fed TMR versus CF. Although average daily ruminal pH was not affected by method of diet delivery, daily duration of ruminal pH <5.6 was less when the diet was delivered as TMR as compared with CF (0.9 h/d versus 3.7 h/d). Delivering the diet as TMR increased ruminal total volatile fatty acid and NH3 concentrations, but had no effect on acetate, propionate, or branched-chain volatile fatty acid molar proportions. Yields of milk, milk fat, or milk protein, and milk production efficiency (kg of milk/kg of DM intake or g of N milk/g of N intake) were not affected by the method of diet delivery. Daily production (g/d), yield (% gross energy intake), and emission intensity (g/kg of energy-corrected milk) of enteric CH4 averaged 420 g/d, 4.9%, and 9.6 g/kg and were not affected by diet delivery method. Fecal N output was greater when the diet was delivered as TMR versus CF, whereas urinary N excretion (g/d, % N intake) was not affected. Manure volatile solids excretion and maximal CH4 production potential were not affected by method of diet delivery. Under the conditions of this study, delivering the diet as concentrates and forages separately versus a total mixed ration had no effect on milk production, enteric CH4 energy losses, urinary N, or maximal manure CH4 emission potential. However, feeding the diet as total mixed ration compared with feeding concentrates and forages separately attenuated the extent of postprandial decrease in ruminal pH, which has contributed to improving NDF digestibility.  相似文献   

5.
Thirty-one Holstein cows (six ruminally cannulated) were used to evaluate milk fatty acids (FA) composition and conjugated linoleic acid (CLA) content on three dietary treatments: 1) total mixed rations (TMR), 2) pasture (Avena sativa L.) plus 6.7 kg DM/d of corn-based concentrate (PCorn), and 3) pasture plus PCorn with 0.8 kg DM/d of Ca salts of unsaturated FA replacing 1.9 kg DM/d of corn (PFat). No differences were found in total (22.4 kg/d) or pasture (18.5 kg/d) dry matter intake, ruminal pH, or total volatile fatty acids concentrations. Fat supplementation did not affect pasture neutral detergent fiber digestion. Milk production did not differ among treatments (19.9 kg/d) but 4% fat-corrected milk was lower for cows fed the PFat compared to cows fed the TMR (16.1 vs. 19.5 kg/d) primarily because of the lower milk fat percentage (2.56 vs. 3.91%). Milk protein concentration was higher for cows fed the TMR than those on both pasture treatments (3.70 vs. 3.45%). Milk from the cows fed the PCorn had a lower content of short- (11.9 vs. 10.4 g/100 g) and medium-chain (56.5 vs. 47.6 g/100 g) FA, and a higher C18:3 percentage (0.07 vs. 0.57 g/100 g) compared with TMR-fed. Cows fed the PFat had the lowest content of short- (8.85 g/100 g) and medium-chain (41.0 g/100 g) FA, and the highest of long-chain FA (51.4 g/100 g). The CLA content was higher for cows in PCorn treatment (1.12 g/100 g FA) compared with cows fed the TMR (0.41 g/100 g FA), whereas the cows fed the PFat had the highest content (1.91 g/100 g FA). Pasture-based diets increased the concentrations of long-chain unsaturated FA and CLA in milk fat. The partial replacement of corn grain by Ca salts of unsaturated FA in grazing cows accentuated these changes. However, those changes in milk FA composition were related to a depression in milk fat.  相似文献   

6.
The objective of this study was to investigate effects of offering dry hay of different quality and length on rumen pH and feed preference in lactating dairy cows. Eight rumen-cannulated Holstein cows (104 ± 34 d in milk, body weight of 601 ± 116 kg, and parity of 2.38 ± 1.69; mean ± standard deviation) were used in a replicated 4 × 4 Latin square design. Each period encompassed 21 d divided into 5 phases: adaptation (d 1 to 14), with ad libitum total mixed ration (TMR); baseline (d 15 to 17), with ad libitum TMR; restricted feeding (d 18), with cows fed for 75% of baseline dry matter intake; challenge (d 19), with 4 kg (as-fed) of finely ground wheat mixed into the digesta of each cow via rumen cannula before feeding; and recovery (d 20 to 21), with ad libitum TMR. Cows were assigned to squares by parity and randomly assigned to treatments. Treatments were 5.2% low-quality hay TMR (CL), 5.2% high-quality hay TMR (CH; both hays were chopped and included in TMR), TMR with 5.2% supplemental long low-quality hay (TMR+L), and TMR with 5.2% supplemental long high-quality hay (TMR+H; both hays were unprocessed and fed separate from TMR).Low-quality hay contained 8.6% crude protein and 67.1% neutral detergent fiber, whereas high-quality hay contained 14.4% crude protein and 56.2% neutral detergent fiber. Animals were housed individually, milked twice per day, and fed once per day for 10% refusal rate. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Subacute ruminal acidosis challenge decreased weighted average rumen pH from 5.72 to 5.51. Cows fed TMR+L had higher rumen pH compared with CL and TMR+H on d 19. During d 20, cows fed chopped hay had higher rumen pH than cows fed supplemental long hay. Cows fed supplemental long hay had greater dry matter intake during baseline and challenge days compared with when hay was chopped and included in the TMR. Minimal differences among diets were found for TMR particle size selection during the challenge day; however, cows had a greater preference for high-quality long hay during recovery days. Milk production averaged 38.3 kg/d and did not differ among treatments. Fat, protein, and lactose yields were also not different among treatments. Milk fatty acid profile was altered by treatment. The TMR+L and CH treatments increased production of cis-9,trans-11 conjugated linoleic acid. Results of this study indicate that feeding TMR plus supplemental long hay can maintain dry matter intake during incidents of and recovery from periods of low ruminal pH.  相似文献   

7.
Two experiments were carried out to evaluate a blend of essential oils (EO) combined with amylase as an alternative to ionophores and its potential for reducing the use of antibiotics in the dairy industry. In experiment 1, 8 rumen-cannulated Holstein cows (576 ± 100 kg of body weight, 146 ± 35 d in milk, and 35.1 ± 4.0 kg/d of milk yield at the start of the experiment) were assigned to a 4 × 4 Latin square experiment with 21-d periods to determine the influence of feed additives on total apparent digestibility of nutrients, ruminal fermentation, N utilization, microbial protein synthesis, blood glucose and urea concentrations, and milk yield and composition in dairy cows. Treatment sequences assigned to cows in each block included no feed additives (control; CON); monensin (MON) added at 13 mg/kg of diet dry matter (DM); a blend of EO supplemented at 44 mg/kg of diet DM; and EO treatment combined with α-amylase at 330 kilo novo units/kg of diet DM (EOA). Differences among treatments were studied using orthogonal contrasts as follows: CON versus feed additives (MON, EO, and EOA), MON versus EO and EOA, and EO versus EOA. No differences were detected in nutrient intake and digestibility in cows. In general, feed additives decreased ruminal NH3-N concentration of cows, notably when diet was supplemented with MON. Furthermore, feed additives increased ruminal concentrations of acetate, butyrate, and branched-chain fatty acids. Cows fed treatments containing EO and EOA exhibited lower pH, higher NH3-N, and a trend to greater total volatile fatty acid concentration in the ruminal fluid compared with cows fed MON. Treatments containing EO increased ruminal butyrate concentration compared with MON. No treatment × time interaction effect was observed on ruminal fermentation measurements. Cows fed diets supplemented with feed additives had greater efficiency of N transfer into milk (milk N:N intake), whereas cows fed EOA exhibited greater N transfer into milk than those fed EO. Treatments had no effect on milk yield and composition, but feed additives increased the milk yield efficiency (milk yield divided by dry matter intake), whereas treatments containing EO had similar milk yield efficiency compared with MON. For experiment 2, 30 multiparous Holstein cows (574 ± 68 kg of body weight, 152 ± 54 d in milk, and 30.9 ± 4.1 kg/d of milk yield at the start of the experiment) were enrolled to a randomized complete block design experiment. The MON, EO, and EOA treatments were randomly assigned to cows within blocks (n = 10), and feed additives were provided throughout a 9-wk period. No differences were found in nutrient intake and digestibility, but cows fed EOA tended to exhibit greater dry matter intake than those fed EO. Blood metabolites and milk production were not affected by treatments. However, cows fed MON or EOA had greater milk protein content than those cows fed treatments containing EO. Feeding EO with or without amylase had similar response to feeding MON in terms of feed intake and milk yield, with a small negative effect on milk protein yield when feeding EO alone. Feed additives increased the concentrations of acetate, butyrate, and branched-fatty acids in ruminal fluid, whereas treatments containing EO had greater ruminal butyrate and NH3-N concentrations. Therefore, either EO or EOA can replace MON in diets of dairy cows while maintaining performance.  相似文献   

8.
Thirty-six multiparous cows were assigned to a study to determine the effects of dietary Co supplementation during late gestation and early lactation on concentrations of Co in serum and liver, vitamin B12 concentrations in serum and milk, and milk yield. Nonlactating cows received diets containing 0.15, 0.89, or 1.71 mg/ kg of Co (dry matter basis) from 55 d before parturition, and lactating cows received diets containing 0.19, 0.57, or 0.93 mg/kg of Co (dry matter basis) from parturition through 120 d postpartum. Serum vitamin B12 concentrations declined sharply in all cows between 55 and 20 d prepartum. Dietary Co supplementation tended to cause an increase in the concentration of vitamin B12 in colostrum and milk. Cobalt intake did not affect concentrations of Co in liver or serum, but increased the Co concentration of milk (0.089, 0.120, and 0.130 μg of Co/mL) at 120 days in milk. There was no effect of Co supplementation on dry matter intake or yield of milk and milk components. In conclusion, serum concentrations of vitamin B12 are reduced in the early dry period, and added dietary Co may increase ruminal synthesis of vitamin B12 as indicated by a tendency for increased vitamin B12 concentrations in colostrum and milk of cows supplemented with dietary Co.  相似文献   

9.
The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH3) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH4 emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average = 19.8 g/kg) or gross energy intake (average = 5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH4 production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N2O) and NH3 emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH4 energy losses.  相似文献   

10.
An evaluation of exogenous enzymes with amylolytic activity for dairy cows   总被引:2,自引:0,他引:2  
An experimental (7B) and a commercial (AMA) formulation of enzymes, both primarily with α-amylase activity, were evaluated for activity at various pH values, stability in ruminal fluid, the potential to improve in vitro ruminal fermentations, and the potential to improve production performance of lactating cows. When incubated (40°C) in buffer with a pH between 5.4 and 6.0, 7B had about 10 to 25 times greater amylase activity than AMA, and enzyme activity in this range increased by 100% for 7B, whereas activity decreased by about 26% for AMA. Both formulations maintained enzyme activity when they were incubated in in vitro ruminal fermentations for 24 h. After 6 h of ruminal in vitro fermentation, additions of 7B resulted in linear increases in apparent total volatile fatty acid production for flint and dent corn but had no effect on floury corn. In a lactation trial, 28 Holstein cows (68 ± 31 d in milk, 46.9 ± 9.1 kg of milk/d) were fed a total mixed ration (TMR) supplemented with nothing (CON), a low dose of 7B [7BL, 0.88 mL/kg of TMR dry matter (DM)], a high dose of 7B (7BH, 4.4 mL/kg of TMR DM), or AMA (0.4 g/kg of TMR DM). The experiment was conducted as a 4. 4 Latin square design with 21-d periods. Cows fed 7BL, 7BH, and AMA ate similar amounts of DM, and cows fed the latter 2 diets consumed more DM than did cows fed CON. Cows fed 7BL produced more milk than cows fed CON and 7BH, but produced similar amounts to cows fed AMA. The production of 3.5% fat-corrected milk was greater from cows fed 7BL and AMA compared with cows fed CON. The percentages of milk fat and milk protein were unaffected by treatment. Total-tract digestion of DM and organic matter were greater for cows fed 7BL compared with those fed CON. The addition of exogenous amylase enzymes to the diets of lactating dairy cows has the potential to improve animal productivity.  相似文献   

11.
We previously reported that milk production in dairy cows was increased by adding a specific xylanase-rich exogenous fibrolytic enzyme (XYL) to a total mixed ration (TMR) containing 10% bermudagrass silage (BMD). Two follow-up experiments were conducted to examine whether adding XYL would increase the performance of dairy cows consuming a TMR containing a higher (20%) proportion of BMD (Experiment 1) and to evaluate the effects of XYL on in vitro fermentation and degradability of the corn silage, BMD, and TMR (Experiment 2). In Experiment 1, 40 lactating Holstein cows in early lactation (16 multiparous and 24 primiparous; 21 ± 3 d in milk; 589 ± 73 kg of body weight) were blocked by milk yield and parity and randomly assigned to the Control and XYL treatments. The TMR contained 20% BMD, 25% corn silage, 8% wet brewer's grain, and 47% concentrate mixture in the dry matter (DM). Cows were fed the XYL-treated or untreated experimental TMR twice per day for 10 wk after a 9-d covariate period. In Experiment 2, ruminal fluid was collected from 3 cannulated lactating Holstein cows fed a diet containing 20% bermudagrass haylage, 25% corn silage and 55% concentrate. In Experiment 1, compared with Control, application of XYL did not affect DM intake (24.0 vs. 23.7 kg/d), milk yield (35.1 vs. 36.2 kg/d), fat-corrected milk yield (36.1 vs. 36.9 kg/d), or yields of milk fat (1.29 vs. 1.31 kg/d) or protein (1.07 vs. 1.08 kg/d). However, intake of neutral detergent fiber (4.67 vs. 4.41 kg/d) tended to increase with XYL; consequently, milk protein concentration was increased by XYL (3.02 vs. 2.95%). Feed efficiency tended to be lower in cows fed XYL (1.57 vs. 1.52 kg of fat-corrected milk/kg of DM intake) compared with Control. In Experiment 2, XYL tended to increase the rate of gas production in the TMR, the molar proportion of propionate for corn silage, and that of valerate for the TMR. In addition, XYL increased in vitro DM, neutral detergent fiber, and acid detergent fiber degradability of BMD and corn silage. Application of XYL to a diet with a relatively high proportion of BMD tended to increase digestible neutral detergent fiber intake, increased milk protein concentration, and in vitro degradability of DM, neutral detergent fiber, and acid detergent fiber. However, XYL did not affect milk production and tended to decrease feed efficiency in early lactation cows.  相似文献   

12.
Ten ruminally cannulated cows were used in a crossover design that investigated the effect of rumen digesta inoculation from non-milk fat-depressed cows on recovery from classical diet-induced milk fat depression (MFD) characterized by reduced fat yield, reduced de novo milk fat synthesis, and increased alternate trans isomers. Two additional cows fed a high-fiber and low-polyunsaturated fatty acid (FA) diet (31.8% neutral detergent fiber, 4.2% FA, and 1.2% C18:2) were used as rumen digesta donors. Milk fat depression was induced during the first 10 d of each period by feeding a low-fiber and high-polyunsaturated FA diet (induction; 26.1% neutral detergent fiber, 5.8% FA, and 1.9% C18:2), resulting in a 30% decrease in milk fat yield. A recovery phase followed where all cows were switched to the high-forage, low-polyunsaturated FA diet and were allocated to (1) control (no inoculation) or (2) ruminal inoculation with donor cow digesta (8 kg/d for 6 d). Milk yield and composition were measured every 3 d. Milk yield progressively decreased during recovery. Milk fat concentration increased progressively during the recovery phase and no effect of treatment existed at any time point. Also, no treatment effect of milk fat yield was detected. The concentration of milk de novo FA increased progressively during recovery for both treatments and was higher for inoculated compared with control cows on d 6. In agreement, milk fat concentration of trans-10,cis-12 conjugated linoleic acid decreased progressively in both treatments and was lower in inoculated cows on d 3 and 6. Ruminal inoculation from non-milk fat-depressed cows did not change milk fat yield, but slightly accelerated the rate of recovery of de novo FA synthesis and normal ruminal FA biohydrogenation, demonstrating a possible opportunity for other interventions that improve the ruminal environment to accelerate recovery from this condition.  相似文献   

13.
The objective of this study was to evaluate the effect of a low-moisture buffer block on ruminal pH and milk production in cows induced with subacute ruminal acidosis (SARA). Sixteen ruminally cannulated cows were randomly assigned to treatment (access to buffer blocks) or control (no buffer blocks). Ruminal pH was recorded each minute; dry matter intake (DMI), milk yield, and milk composition were measured daily. The experiment lasted 12 d and consisted of a 3-d pre-SARA period (without access to buffer blocks; d 1 to 3), after which 8 cows were given access to buffer blocks and 8 cows continued without access to buffer blocks. The next 4 d (d 4 to 7) were for evaluating the response to buffer blocks. On d 8, cows were restricted to 50% of previous DMI, and on d 9 SARA was induced (addition of 4 kg of wheat/barley pellet to pre-SARA total mixed ration (TMR). Cows were then monitored for a 3-d recovery period (d 10 to 12). The SARA challenge was successful in decreasing mean ruminal pH and time and area below pH 5.6. Intake of buffer blocks averaged 0.33 kg of DM/cow per day and was greatest on d 4 and d 8. Total DMI (TMR plus buffer block) and yields of milk and milk components were not affected by treatment. Although there was no overall effect of treatment on any of the ruminal pH variables measured, there were significant treatment by period interactions for several ruminal pH variables. Cows on the control treatment tended to experience a greater decrease in mean ruminal pH when induced with SARA than cows with access to buffer blocks (−0.55 vs. −0.20 pH units). Cows on the control treatment also experienced a greater increase in time (9.7 vs. 4.1 h/d) and area (249 vs. 83 min × pH units/d) below pH 5.6 compared with cows with access to buffer blocks. Ruminal volatile fatty acids, lactate, ethanol, and succinate concentrations during the SARA challenge did not differ between treatments. Eating behavior was not affected by treatment. Size of the first meal of the day was greater on the SARA challenge day than during the pre-SARA period (11.0 vs. 5.7 kg, as fed). Giving cows access to a buffer-containing molasses block may reduce the duration and the severity of a 1-d SARA challenge.  相似文献   

14.
The objective of this study was to determine the feeding value of forage soybean silage (SS) for dairy cows relative to a fourth-cut alfalfa silage (AS). Forage soybean was harvested at full pod stage. Two isonitrogenous diets were formulated with a 48:52 forage:concentrate ratio. Soybean silage and AS constituted 72% of the forage in each diet, with corn silage constituting the remaining 28%. Twenty Holsteins cows in early lactation were used in a switchback design. Four lactating Holsteins cows fitted with ruminal cannulas were used to determine the effects of dietary treatments on ruminal fermentation parameters and in vivo total tract nutrient utilization. Relative to AS, SS contained 15, 28, and 25% more neutral detergent fiber, acid detergent fiber, and crude protein, respectively. Dry matter intake (23.5 vs. 25.1 kg/d) and milk yield (35.5 vs. 37.2 kg/d) were lower for cows fed SS than for those fed AS. However, energy-corrected milk and milk efficiency were similar for both dietary treatments. Milk protein, lactose, and total solids concentrations were not influenced by dietary treatments (average 3.0, 4.7, and 12.6%, respectively). However, cows fed SS produced milk with greater milk fat (3.8 vs. 3.6%) and milk urea nitrogen concentrations (15.6 vs. 14.3 mg/dL) compared with cows fed AS. Ruminal pH was lower, whereas ruminal NH3-N concentration was greater in cows fed SS than in cows fed AS. Total tract digestibilities of dry matter, crude protein, and neutral detergent fiber were not influenced by silage type. We concluded that forage SS, when compared with AS, had a negative impact on feed intake and milk yield, whereas energy-corrected milk, milk efficiency, and total tract nutrient digestion were similar.  相似文献   

15.
The objective of this study was to examine the effect of applying a fibrolytic enzyme preparation to diets with high (48% of diet dry matter, DM) or low (33% of diet DM) proportions of concentrate on production performance of lactating dairy cows. Sixty lactating Holstein cows (589 kg ± 20; 22 ± 3 d in milk) were stratified according to milk production and parity and randomly assigned to 4 treatments with a 2 × 2 factorial arrangement. Dietary treatments included the following: 1) low-concentrate diet (LC); 2) LC plus enzyme (LCE); 3) high-concentrate diet (HC); and 4) HC plus enzyme (HCE). The enzyme was sprayed at a rate of 3.4 mg of enzyme/g of DM on the total mixed ration daily and the trial lasted for 63 d. A second experiment with a 4 × 4 Latin square design used 4 ruminally fistulated cows to measure treatment effects on ruminal fermentation and in situ ruminal dry matter degradation during four 18-d periods. Enzyme application did not affect dry matter intake (DMI; 23.9 vs. 22.3 kg/d) or milk production (32.8 vs. 34.2 kg/d) but decreased estimated CH4 production, increased total volatile fatty acid concentration (114.5 vs. 125.7 mM), apparent total tract digestibility of DM (69.8 vs. 72.6%), crude protein (CP; 69.2 vs. 73.3%), acid detergent fiber (50.4 vs. 54.8%), neutral detergent fiber (53.7 vs. 55.4%), and the efficiency of milk production (1.44 vs. 1.60 kg of milk/kg of DMI). Feeding more concentrates increased DMI (21.5 vs. 24.8 kg/d), milk yield (32.2 vs. 34.7 kg/d), milk protein yield (0.89 vs. 0.99 kg/d), and DM (69.9 vs. 72.6%), but decreased ruminal pH (6.31 vs. 6.06). Compared with cows fed HC, those fed LCE had lower DMI (20.8 vs. 25.7 kg/d) and CP intake (3.9 vs. 4.8 kg/d), greater ruminal pH (6.36 vs. 6.10), and similar milk yield (33.2 ± 1.1 kg/d). Consequently, the efficiency of milk production was greater in cows fed LCE than those fed HC (1.69 vs. 1.42 kg of milk/kg of DMI). This fibrolytic enzyme increased the digestibility of DM, CP, neutral detergent fiber, and acid detergent fiber and the efficiency of milk production by dairy cows. Enzyme application to the low-concentrate diet resulted in as much milk production as that from cows fed the untreated high-concentrate diet.  相似文献   

16.
Four ruminally cannulated lactating cows were used in a 4 × 4 Latin square design (28-d periods) to determine the effects of cinnamaldehyde (CIN; 1 g/cow per day), condensed tannins from quebracho trees (QCT, containing 70% tannins, 150 g/cow per day), and saponins from Yucca schidigera extract (YSE, containing 10% saponins; 60 g/cow per day) on digestion, ruminal fermentation characteristics, protozoal populations, and milk production. Intake of dry matter was not affected by the addition of CIN or QCT, but cows fed YSE had lesser intake than cows fed the control diet (21.8 vs. 23.2 kg/d). Apparent total-tract digestibilities of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were unaffected by dietary treatments. Supplementation with CIN, QTE, or YSE did not affect in situ ruminal degradation of soybean meal, grass silage, or corn grain. Ruminal pH (6.67), total volatile fatty acid concentration (135 mM), and molar proportions (mol/100 mol of total volatile fatty acid) of acetate (65.0), propionate (19.6), and butyrate (11.2) were similar among treatments. Ruminal NH3-N concentration was not changed by the addition of CIN and YSE, but tended to decrease in cows fed QCT compared with cows fed the control diet (132 vs. 160 mg/L). Total numbers of ruminal protozoa were not changed by adding CIN, QCT, or YSE in the diet (5.85 log10/mL). However, the number of Isotricha was greater in ruminal fluid of cows fed CIN than in ruminal fluid of cows fed the control diet (4.46 vs. 4.23 log10/mL). Milk production (33.1 kg/d), milk fat (4.3%), and milk protein (3.5%) remained unchanged between dietary treatments. Results of this study show that under our experimental conditions, supplementing dairy cow diets with CIN, QCT, or YSE had limited effects on digestion, ruminal fermentation characteristics, and protozoal populations. The lack of effects observed in this study suggests that these antimicrobials require administration at greater doses to favorably alter rumen microbial fermentation.  相似文献   

17.
The objective of this study was to determine if feeding roasted corn would improve production and nutrient utilization when supplemented to lactating cows fed 1 of 3 different alfalfa silages (AS). Forty-two lactating Holstein cows (6 fitted with ruminal cannulas) averaging 77 d in milk and 43 kg of milk/d pretrial were assigned to 2 cyclic changeover designs. Treatments were AS ensiled in bag, bunker, or O2-limiting tower silos and supplemented with ground shelled corn (GSC) or roasted GSC (RGSC). Silages were prepared from second-cutting alfalfa, field-wilted an average of 24 h, and ensiled over 2 d. Production and N utilization were evaluated in 36 cows during four 28-d periods, and ruminal fermentation was evaluated with 6 cows during five 21-d periods. Experimental diets contained 40% AS, 15% corn silage, and 35% of either GSC or RGSC on a dry matter basis. No significant interactions between AS and corn sources were detected for any production trait. Although the chemical composition of the 3 AS was similar, feeding AS from the O2-limited tower silo elicited positive production responses. Yields of 3.5% fat-corrected milk and fat were increased 1.7 kg/d and 150 g/d, and milk fat content was increased 0.3% when cows were fed diets based on AS from the O2-limiting silo compared with the other 2 silages. The responses in milk fat were paralleled by an average increase in acid detergent fiber digestibility of 270 g/d for cows fed AS from the O2-limiting tower silo. However, ruminal concentrations of lipogenic volatile fatty acids were unchanged with AS source. Cows fed RGSC consumed 0.6 kg/d more dry matter and yielded 30 g/d more protein and 50 g/d more lactose than cows fed GSC diets. There was no evidence of increased total tract digestibility of organic matter or starch, or reduced ruminal NH3 concentration, when feeding RGSC. Free amino acids increased, and isovalerate decreased in rumen fluid from cows fed RGSC diets. However, responses in production with roasted corn were mainly due to increased dry matter intake, which increased the supply of energy and nutrients available for synthesis of milk and milk components.  相似文献   

18.
Twelve Holstein cows were used in a replicated Latin square experiment to determine the effect of adding dried molasses to high-alfalfa silage diets on dairy cow performance. Three isonitrogenous diets were formulated with a 68:32 forage:concentrate ratio, with alfalfa silage as the only forage source. Dietary treatments were a control diet with no added molasses and 3 and 6% dried molasses diets. Three lactating Holstein cows fitted with ruminal cannulas were used to determine the effects of dietary treatments on ruminal fermentation. Dietary treatments had no effect on dry matter (average 23.3 kg/d), crude protein (average 4.4 kg/d), or neutral detergent fiber (average 7.4 kg/d) intake. Milk yield, energy-corrected milk (average 35.4 kg/d), and 4% fat-corrected milk (average 33.8 kg/d) were not influenced by dietary treatments. Cows fed the control diet produced milk with less milk urea nitrogen concentration than those fed molasses-supplemented diets. Ruminal pH, NH3-N concentration, and total volatile fatty acids were not different among dietary treatments. The molar proportion of acetate linearly increased, whereas the molar proportion of propionate linearly decreased as the level of dried molasses increased. It was concluded that addition of dried molasses to high-alfalfa silage diets at 6% of the diet (dry matter basis) increased milk urea nitrogen but had no effect on animal performance.  相似文献   

19.
The objective of this study was to determine if feed sorting can be reduced and if nutrient consumption can be limited in late-lactation cows through water addition to a nutrient-dense total mixed ration (TMR) with a dry matter (DM) content greater than 60%. Twelve lactating Holstein cows (214.8±28.5 d in milk) were exposed to 2 diets in a crossover design with 28-d periods. Diets had the same ingredient composition and differed only in DM percentage, which was reduced by the addition of water. Treatment diets were (1) dry TMR (61.7% DM) and (2) wet TMR (51.9% DM). Dry matter intake and milk production (4% fat-corrected milk; FCM) were recorded for the last 14 d of each treatment period. For the final 4 d of each period, fresh feed and orts were sampled for particle size analysis and subsequent calculation of sorting activity (expressed as a percentage of predicted intake). Adding water to the diet tended to decrease the amount of DM in the fine particle fraction, increase starch concentration in the longer ration particles, and reduce starch concentration in the shortest ration particles. All cows sorted against long ration particles; the extent of this sorting did not differ between the dry and wet treatments (72.9 vs. 77.6%). There tended to be more sorting for fine ration particles on the dry diet compared with the wet (106.3 vs. 104.0%). Water addition had no effect on production, with similar DMI (27.9 vs. 26.5 kg/d), 4% FCM (28.7 vs. 27.6 kg/d), and efficiency of production (0.98 vs. 1.00 kg of 4% FCM/kg of DMI) between the dry and wet treatments. Adding water to a TMR with greater than 60% DM containing primarily haylage and corn silage forage sources may change ration particle DM distribution and particle starch content, possibly contributing to less sorting for the smallest ration particles. This research does not provide evidence that water addition to such a TMR can effectively limit DMI in late-lactation cows and, thus, improve efficiency of milk production.  相似文献   

20.
Fifteen multiparous Holstein cows were used in a 3 × 3 Latin square experiment to determine the effects of feeding pearl millet grain on feed intake, milk yield, and milk composition of lactating dairy cows. Three isonitrogenous diets with a 57:43 forage:concentrate ratio were formulated. Diets contained 30% corn, 30% pearl millet, or 31% corn and pearl millet mixed 1:1 (wt/wt). Three lactating Holstein cows fitted with ruminal cannulas were used to determine the effects of dietary treatments on ruminal fermentation parameters. Dry matter intake and energy-corrected milk were similar for all dietary treatments and averaged 23.8 and 33.5 kg/d, respectively. Dry matter intake (% of BW) was unaffected by dietary treatments and averaged 3.40%. Milk fat, protein, lactose, and total solids concentrations were not influenced by grain type. Ruminal NH3-N concentration was unaffected by dietary treatments. However, ruminal pH tended to be lower for cows fed pearl millet than those fed corn and pearl millet mix. It was concluded that pearl millet grain can replace corn in dairy cow diets up to 30% of the diet DM with no adverse effects on milk yield or milk composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号