首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives of the experiment were to determine the length of exposure to an acidogenic diet that would elicit changes in acid-base balance, mineral digestion, and response to parathyroid hormone (PTH)-induced changes in blood Ca and vitamin D3 in prepartum dairy cows. Nonlactating parous Holstein cows (n = 20) at 242 d of gestation were blocked by lactation (1 or >1) and pretreatment dry matter (DM) intake and, within block, they were randomly assigned to a diet with a dietary cation-anion difference (DCAD) of +200 mEq/kg of DM (DCAD +200) or an acidogenic diet with ?150 mEq/kg of DM (DCAD ?150). Water and DM intake were measured and blood was sampled daily. Urine was sampled every 3 h for 36 h, and then daily. During PTH challenges on d 3, 8, and 13, cows received i.v. PTH 1–34 fragment at 0.05 µg/kg of body weight every 20 min for 9 h to mimic the pulsatile release of endogenous PTH. Blood was sampled at 0 h, and hourly thereafter until 10 h, and at 12, 18, 24, 36, and 48 h relative to each challenge. Acid-base measures and concentrations of ionized Ca (iCa) in whole blood, and total Ca, Mg, P, and vitamin D metabolites in plasma were evaluated. On d 2 and 7, Ca, Mg, and P balances were evaluated. Cows fed DCAD ?150 had smaller blood pH (7.431 vs. 7.389) and HCO3? (27.4 vs. 22.8 mM) compared with DCAD +200, and metabolic acidosis in DCAD ?150 was observed 24 h after dietary treatments started. Concentrations of iCa begin to increase 24 h after feeding the acidogenic diet, and it was greater in DCAD ?150 compared with DCAD +200 by 3 d in the experiment (1.23 vs. 1.26 mM). During the PTH challenges, cows fed DCAD ?150 had greater concentration of iCa and area under the curve for iCa than those fed DCAD +200 (48.2 vs. 50.7 mmol/L × hour), and there was no interaction between treatment and challenge day. Concentration of 1,25-dihydroxyvitamin D3 in plasma did not differ during the PTH challenge, but change in 1,25-dihydroxyvitamin D3 relative to h 0 of the challenge was smaller in cows fed DCAD ?150 than cows fed DCAD +200 (44.1 vs. 32.9 pg/mL). Urinary loss of Ca was greater in cows fed DCAD ?150 compared with DCAD +200 (1.8 vs. 10.8 g/d); however, because digestibility of Ca increased in cows fed DCAD ?150 (19.7 vs. 36.6%), the amount of Ca retained did not differ between treatments. Diet-induced metabolic acidosis was observed by 24 h after dietary treatment started, resulting in increases in concentration of iCa in blood observed between 1 and 3 d. Collectively, present results indicate that tissue responsiveness to PTH and changes in blood concentrations of iCa and digestibility of Ca are elicited within 3 d of exposure to an acidogenic diet. The increased apparent digestibility of Ca compensated for the increased urinary loss of Ca resulting in similar Ca retention.  相似文献   

2.
The current study was undertaken to evaluate the effects of feeding timothy (Phleum pratense L.) hay differing in dietary cation-anion difference (DCAD) on the capability of cows to maintain calcium homeostasis around parturition. We hypothesized that feeding low-DCAD timothy hay during the prepartum period would induce a mild metabolic acidosis prepartum and improve calcium homeostasis postpartum with no effect on dry matter intake. Forty-one dry pregnant Holstein cows entering their second lactation or greater were used in a randomized complete block design. Timothy hay was obtained from an established timothy stand under a pivot irrigation system. Low-DCAD timothy hay was produced by fertilizing the area between the second and third pivot towers at a rate of 224 kg of CaCl2/ha, and control timothy hay (high DCAD) was grown on the area between the fourth and fifth pivot towers of the same field. The chloride concentration was 1.07 and 0.15% on a dry matter (DM) basis, and the DCAD was 1.2 and 21.6 mEq/100 g of DM for the low- and high-DCAD timothy hay, respectively. Experimental diets, containing timothy hay at 63% of dietary DM, were fed ad libitum starting 30 d before the expected calving date. The DCAD values were 1.6 vs. 14.5 mEq/100 g of DM for the low- and high-DCAD timothy-based diets, respectively. At the beginning of the study, urine pH and blood bicarbonate concentration averaged 8.22 ± 0.06 and 28.5 ± 0.3 mM, respectively. The low-DCAD timothy diet decreased urine pH compared with the high-DCAD timothy diet on d 21 (7.75 vs. 8.31), d 14 (7.69 vs. 8.22), and d 7 (7.50 vs. 8.19) before calving, and it also decreased the prepartum blood bicarbonate concentration by 2 mM. In addition, cows fed the low-DCAD timothy diet had greater blood ionized calcium concentration prepartum (1.22 vs. 1.19 mM), greater blood ionized calcium concentration at 0 and 8 h after calving, and similar prepartum dry matter intake. These results indicate that timothy hay differing in DCAD affects the acid-base balance of periparturient dairy cows, and that low-DCAD timothy hay improves calcium homeostasis postpartum with no negative effect on dry matter intake.  相似文献   

3.
Forages low in dietary cation-anion difference (DCAD) can be used to decrease the DCAD in prepartum diet but the extent to which DCAD needs to be reduced is of recent interest. The objective of this study was to evaluate the effectiveness of timothy hays differing in DCAD at maintaining Ca homeostasis. Six nonlactating and nonpregnant multiparous Holstein cows were fed diets containing timothy (Phleum pratense L.) hay with DCAD values of 4.1 ± 3.6 (LOW), 14.1 ± 3.0 (MED), or 25.1 ± 2.5 (HIGH) mEq per 100 g of DM in a duplicated 3 × 3 Latin square design with 14-d experimental periods. The LOW and MED hays were produced by fertilizing established timothy fields at a rate of 224 kg CaCl2 per ha, and HIGH hay was obtained from the same field where LOW hay was produced, but from a section not fertilized with CaCl2. Experimental diets, containing LOW, MED, or HIGH timothy hay at 71% of dietary DM, had DCAD values of 0.7, 7.3, and 14.4 mEq per 100 g of DM, respectively. Animals were fed at 6% of metabolic body weight, which provided 108% of their daily energy requirement. For each period, after a 12 d diet adaptation, cows were subjected to an EDTA challenge (3 cows each on d 13 and 14). Infusion of EDTA solution into the jugular vein decreases the concentration of blood ionized Ca, and the EDTA challenge protocol determined the resistance time and recovery time: the time required for the blood ionized Ca concentration to decrease to 60%, and the time required to recover to 90% of the prechallenge concentrations, respectively. Urine pH was lower when cows were fed LOW compared with HIGH diet (6.88 vs. 7.83), but urine pH when cows were fed MED diet (7.15) did not differ from that when cows received the LOW or HIGH diet. However, immediately before the EDTA challenge, blood pH was lower when cows were fed LOW or MED compared with HIGH diet (7.44 vs. 7.47). Although the resistance time was not affected by treatments, the recovery time was shorter when cows were fed the LOW compared with MED or HIGH diet (185 vs. 248 and 263 min, respectively). Blood pH decreased when cows were fed the LOW or MED diet, but the capability to maintain Ca homeostasis was enhanced only when cows received the LOW diet, in which the DCAD value was decreased to 1 mEq per 100 g of DM.  相似文献   

4.
Hypocalcemia affects almost 50% of all dairy cows. Our laboratory has previously demonstrated that infusions of the serotonin precursor 5-hydroxy-l-tryptophan (5-HTP) increase circulating calcium concentrations in the Holstein transition cow. It is unknown whether feeding a negative dietary cation-anion difference (DCAD) diet alters the relationship between 5-HTP and hypocalcemia. The main objective of this study was to determine whether feeding a negative DCAD (?DCAD) diet before calving in conjunction with 5-HTP treatment could further diminish the magnitude of hypocalcemia at the time of calving. We used a randomized complete block design with a 2 × 2 factorial arrangement. Thirty-one multiparous Holstein cows were fed either a positive (+13 mEq/100 g) or negative (?13 mEq/100 g) DCAD diet 21 d before parturition and were intravenously infused daily with saline or 5-HTP (1 mg/kg) starting 7 d before the estimated date of parturition. Cows were blocked by parity and were randomly assigned to 1 of 4 treatment groups: positive DCAD plus saline, positive DCAD plus 5-HTP, negative DCAD plus saline, and negative DCAD plus 5-HTP, resulting in n = 8 per group. Total calcium (tCa), ionized calcium (iCa), and feed intake were recorded. The iCa was elevated prepartum in the ?DCAD/5-HTP group compared with the other treatment groups as well as on d 0 and 1 postpartum. Although differences in tCa were not significant across the pre- or postpartum periods, tCa was numerically higher on d 0 and significantly higher on d 1 in ?DCAD/5-HTP cows compared with all other groups. Prepartum the ?DCAD/5-HTP treatment group ate less than the other treatment groups; however, postpartum dry matter intake differences were not significant. These findings demonstrate that feeding a ?DCAD diet in conjunction with 5-HTP prepartum can increase postpartum circulating iCa concentrations and therefore diminish the magnitude of hypocalcemia at the time of parturition.  相似文献   

5.
Eighty-two multiparous Holstein cows were fed diets differing in dietary cation-anion difference (DCAD) and Ca concentrations in a randomized block design experiment beginning 4 wk before anticipated calving to determine the effects on colostrum yield and quality and acid-base balance and mineral status of newborn calves. Treatments were arranged as a 2 × 2 factorial to provide 2 DCAD [?22 mEq/100 g of dry matter (NEG) or ?3 mEq/100 g of dry matter (NEU)] and 2 supplemental Ca concentrations (1.3 or 1.8% of dry matter). After calving, cows were milked within 2 to 8 h and colostrum yield was recorded. Calves were fed 200 g of IgG of a commercial colostrum replacer within 4 h of birth. No differences were observed in birth weight or dystocia score among treatments, which averaged 42.7 kg and 1.12, respectively. Colostrum yield was not different among treatments and averaged 8.75 kg. Colostrum quality, as measured using a Brix refractometer, was not affected by DCAD but was higher for 1.3% compared with 1.8% Ca: 21.58% and 19.87%, respectively. Colostrum IgG concentrations were higher for NEG compared with NEU and for 1.3% compared with 1.8% Ca. No differences were observed in concentrations of serum IgG, Ca, P, K, Cl, anion gap, or whole-blood pH, partial pressure of O2, or SO2 of calves among treatments. Serum Mg and lactate concentrations were higher and CO2 tended to be lower for calves born to cows fed 1.3% compared with 1.8% Ca. Interactions of DCAD and Ca were observed for serum Na and Cl, which were higher for NEU-1.3% Ca and NEG-1.8% Ca compared with NEU-1.8% Ca and NEG-1.3% Ca. Whole-blood partial pressure of CO2, and HCO3 exhibited an interaction of DCAD and Ca and tended to be lower for NEU-1.3% Ca and NEG-1.8% Ca compared with NEU-1.8% Ca and NEG-1.3% Ca. Results of this trial indicate that feeding prepartum diets with 1.8% compared with 1.3% supplemental Ca reduced colostrum quality and serum concentrations of Mg and lactate in calves immediately after birth. Feeding NEG supported higher colostrum IgG concentrations. Blood mineral concentrations and blood gas balance tended to differ, but the effects were not consistent across DCAD and Ca.  相似文献   

6.
Prepartum diets influence cow performance for weeks to months postpartum. This observation leads to questions about milk yield and physiological and health responses to diets with negative dietary cation-anion difference (DCAD). Further, responses to increased intake of a diet with lower DCAD (Eq/d) have not been explored using meta-analysis. Our objectives were to explore the effects of prepartum DCAD intake on metabolism and production and health as well as the potential for differences in intake of other macrominerals to influence responses to differences in DCAD intake using classical meta-analytical methods. Not all treated groups were fed a diet with negative DCAD, and the effect studied is that of reducing the DCAD. We hypothesized that reducing DCAD intake would improve Ca metabolism and postpartum performance. We used a maximum of 58 comparisons from 31 experiments and a total of 1,571 cows. Intakes of DCAD were 2.28 Eq/d and ?0.64 Eq/d for the control, higher DCAD and treated, lower DCAD groups, respectively. Diets with lower DCAD reduced urine pH [standardized mean difference (SMD) = 1.90 and weighted mean difference (WMD) ?1.23 pH]. Intake of lower DCAD decreased prepartum DMI (SMD = 0.23; WMD = 0.29 kg/d), increased postpartum DMI (SMD = 0.40; WMD = 0.63 kg/d), and increased milk yield (SMD = 0.172). However, we found an interaction with parity; diets with lower DCAD increased milk yield in parous cows (SMD = 0.29; WMD = 1.1 kg/d) but resulted in numerically lower milk yield in nulliparous cows (SMD = ?0.20; WMD = 1.28 kg/d) compared with controls. The FCM yield increased with treatment (SMD = 0.12; WMD = 0.56 kg/d); however, yield of treated cows tended to be greater in parous cows but smaller for nulliparous cows compared with controls. Milk fat percentage, milk fat yield, and milk protein percentages were not affected by treatment, although milk protein yield tended to increase in cows fed the lower DCAD diet (SMD = 0.21; WMD = 0.02 kg/d). Treatment increased blood Ca (SMD = 0.53; WMD = 0.13 mM) and P (SMD = 0.40; WMD = 0.13 mM) on the day of calving and Ca postpartum (SMD = 0.36; WMD = 0.06 mM). Treated cows had smaller concentration of blood BHB before calving than controls (SMD = ?0.39; WMD = ?0.04 mM). Reducing DCAD in cows resulted in decreased risks of clinical hypocalcemia (risk ratio = 0.60) and retained placenta (risk ratio = 0.59), and reduced the odds of metritis (odds ratio = 0.46) and overall disease (OR = 0.61). We observed no effect on risk of abomasal displacement or mastitis and no effect of differences between treated and control cows in Ca intake (g/d) on the outcomes evaluated. A positive role for increased Mg intake between groups for increased milk fat yield and in reducing the risk of retained placenta was identified. Diets with lower DCAD improved performance of parous dairy cows, and our findings suggest a need for more studies on the effects of a lower DCAD on nulliparous transition cows.  相似文献   

7.
Eighty-two multiparous Holstein cows were enrolled 28 d before expected calving and assigned to 1 of 4 dietary treatments in a randomized block design experiment with a 2 × 2 factorial arrangement of treatments to determine the effect of feeding a neutral or acidogenic diet varying in Ca concentration on prepartum and postpartum intake, blood mineral and metabolite concentrations, and postpartum milk production. Prepartum diets were formulated to provide a dietary cation-anion difference (DCAD) of ?21 (negative, NEG) or ?2 (neutral, NEU) mEq/100 g of dry matter with either 1.3% or 1.8% Ca. After calving, cows remained on trial through 63 d in milk (DIM) and were fed a common lactation diet. Urine pH was lower for NEG compared with NEU and tended to be lower for 1.8% Ca compared with 1.3% Ca. Fractional excretion of Ca and Mg in urine was greater for NEG than for NEU. Prepartum plasma bicarbonate was lower and P was higher for NEG compared with NEU. Prepartum plasma P and blood urea nitrogen to creatinine ratio was higher for 1.3% compared with 1.8% Ca. Postpartum, concentrations of plasma total protein, albumin, blood urea nitrogen, Mg, and ionized Mg (iMg) were higher and Na was lower for NEU compared with NEG. An interaction of DCAD and Ca was observed for plasma creatinine, which was highest for cows fed NEU and 1.3% Ca compared with all other treatments. Interactions of DCAD and DIM were observed for plasma bicarbonate and iMg. Bicarbonate was higher at 3 DIM and lower at 14 DIM for NEU compared with NEG. Concentrations of iMg were higher at 1, 2, and 14 DIM for NEU compared with NEG. Interactions of Ca and DIM were observed for plasma Ca, Cl, and anion gap. Compared with cows fed 1.5% Ca, those fed 1.3% Ca had lower Ca and anion gap and higher Cl at 1 DIM and lower Cl and higher anion gap at 14 DIM. No differences were observed in body weight or body condition score due to DCAD or Ca. Prepartum dry matter intake (DMI) was lower for NEG compared with NEU and lower for 1.8% compared with 1.3% Ca. Postpartum DMI was not different among treatments. An interaction was observed for DCAD and DIM due to higher milk yield after 45 DIM for NEG compared with NEU. No differences were observed in milk component percentage or yield among treatments. There was an interaction of DIM and Ca for milk urea concentrations, which were higher at 5 wk and lower at 6 wk for 1.3% Ca compared with 1.8% Ca. These results suggest that feeding NEG prepartum alters plasma and urine mineral concentrations compared with feeding NEU and supports increased milk yield after 45 DIM. Feeding 1.8% Ca prepartum only improved plasma Ca at 1 DIM. Feeding either NEG or 1.8% Ca reduced DMI prepartum compared with NEU or 1.3% Ca.  相似文献   

8.
Our objective was to assess the effects of feeding negative dietary cation-anion difference (DCAD) prepartum diets on milk production, reproductive performance, and culling. Cows from 4 commercial farms in Ontario, Canada were enrolled in a pen-level controlled trial from November 2017 to April 2019. Close-up pens (1 per farm) with cows 3 wk before calving were randomly assigned to a negative DCAD (TRT; ?108 mEq/kg of dry matter; target urine pH 6.0–6.5) or a control diet (CON; +105 mEq/kg of dry matter with a placebo supplement). Each pen was fed TRT or CON for 3 mo (1 period), and then switched to the other treatment for the next period (4 periods per farm). Data from 15 experimental units (8 pen treatments in TRT and 7 in CON), with a total of 1,086 observational units (cows), were included. The effect of treatment on milk yield at the first 3 milk recording tests of lactation was assessed with linear regression models accounting for repeated measures. The risk of pregnancy at first artificial insemination and culling by 30, 60, and 305 d in milk (DIM) were analyzed with logistic regression models, and effects on time to first AI, pregnancy, and culling were assessed with Cox proportional hazards models. All models included treatment, parity, and their interactions, accounting for pen-level randomization and clustering of animals within farm with random effects, giving 10 degrees of freedom for treatment effects. Multiparous cows fed TRT produced more milk at the first (42.0 vs. 38.8 ± 1.2 kg/d) and second (44.2 vs. 41.7 ± 1.3 kg/d) milk tests. However, multiparous cows fed TRT tended to have 0.2 percentage units less milk fat content at these tests. Although multiparous cows fed TRT tended to have greater energy-corrected milk at the first test (least squares means ± standard error: TRT = 46.1 ± 0.9 vs. CON = 43.8 ± 1 kg/d), there were no differences observed in energy-corrected milk at the second or third tests. In primiparous cows, there was no effect of treatment on milk production. Multiparous cows fed TRT had greater pregnancy to first insemination (TRT = 42 ± 3 vs. CON = 32 ± 4%) and tended to have shorter time to pregnancy [hazard ratio (HR) = 1.20; 95% CI: 0.96–1.49]. In primiparous cows fed TRT, time to pregnancy was increased (HR = 0.76; 95% CI: 0.59–0.99). Culling by 30 DIM tended to be less in TRT (3.3 ± 1.1%) than CON (5.5 ± 1.8%). No effect of treatment on culling by 305 DIM was detected in primiparous cows, but in multiparous cows, the TRT diets decreased the odds of culling (21.3 ± 1.9 vs. 31.7 ± 2.8%) and daily risk of culling to 305 DIM (HR = 0.64; 95% CI: 0.46 to 0.89). Under commercial herd conditions, prepartum negative DCAD diets improved milk production and reproductive performance, and reduced culling risk in multiparous cows. In primiparous cows, TRT diets had no effect on milk yield or culling, but increased the time to pregnancy. Our results suggest that negative DCAD diets should be targeted to multiparous cows.  相似文献   

9.
Low postpartum blood calcium remains one of the largest constraints to postpartum feed intake, milk yield, and energy balance in transitioning dairy cows. Supplemental dietary anions decrease the dietary cation-anion difference (DCAD) and reduce the risk for postpartum hypocalcemia. Prepartum management strategies aiming to minimize social stress and diet changes have resulted in a need to explore the effects of extended exposure to a negative DCAD (>21 d) diet. Holstein and Holstein-cross dairy cows (n = 60) were assigned to 1 of 3 treatments 42 d before expected calving to evaluate effects of supplying anions for 21 or 42 d during the dry period on energy status, postpartum production, and Ca homeostasis. Treatments included (1) a control diet (CON; DCAD = 12 mEq/100 g of DM), (2) a 21-d negative DCAD diet (21-ND; DCAD = 12 and −16 mEq/100 g of DM), and (3) a 42-d negative DCAD diet (42-ND; DCAD = −16 mEq/100 g of DM). Cows fed CON were fed positive DCAD prepartum for 42 d. Cows fed 21-ND received the positive DCAD (12 mEq/100 g of DM) diet for the first 21 d of the dry period and the anionic diet (−16 mEq/100 g of DM) from d 22 until calving. Cows fed 42-ND received the anionic diet for the entire dry period. Control and anionic diets were formulated by using 2 isonitrogenous protein mixes: (1) 97.5% soybean meal and (2) 52.8% BioChlor (Church & Dwight Co. Inc.), 45.8% soybean meal. Supplementing anions induced a mild metabolic acidosis, reducing urine pH for 21-ND and 42-ND compared with CON. Prepartum DMI was not different among treatments. Postpartum DMI was higher for 21-ND compared with CON (20.8 vs. 18.1 ± 1.1 kg/d), and 42-ND had similar DMI compared with 21-ND. During the first 56 d of lactation 21-ND had greater average milk production compared with CON (44.8 vs. 39.2 ± 2.1 kg/d). Average milk production by 42-ND was similar to 21-ND. Postpartum total blood Ca concentration was greater for 42-ND. Cows fed anionic diets prepartum tended to have lower lipid accumulation in the liver after calving compared with CON. These data suggest low-DCAD diets fed for 21 or 42 d during the dry period can have positive effects on postpartum DMI, Ca homeostasis, and milk production.  相似文献   

10.
The objectives of the experiment were to evaluate the effects of feeding diets with distinct dietary cation-anion difference (DCAD) levels and supplemented with 2 sources of vitamin D during the prepartum transition period on postpartum health and reproduction in dairy cows. The hypotheses were that feeding acidogenic diets prepartum would reduce the risk of hypocalcemia and other diseases, and the benefits of a negative DCAD treatment on health would be potentiated by supplementing calcidiol compared with cholecalciferol. Cows at 252 d of gestation were blocked by parity (28 nulliparous and 52 parous cows) and milk yield within parous cows, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial, with 2 levels of DCAD, positive (+130 mEq/kg) or negative (?130 mEq/kg), and 2 sources of vitamin D, cholecalciferol or calcidiol, fed at 3 mg for each 11 kg of diet dry matter. The resulting treatment combinations were positive DCAD with cholecalciferol (PCH), positive DCAD with calcidiol (PCA), negative DCAD with cholecalciferol (NCH), and negative DCAD with calcidiol (NCA), which were fed from 252 d of gestation to calving. After calving, cows were fed the same lactation diet supplemented with cholecalciferol at 0.70 mg for every 20 kg of dry matter. Blood was sampled 7 d before parturition, and at 2 and 7 d postpartum to evaluate cell counts and measures of neutrophil function. Postpartum clinical and subclinical diseases and reproductive responses were evaluated. Feeding a diet with negative DCAD eliminated clinical hypocalcemia (23.1 vs. 0%) and drastically reduced the incidence and daily risk of subclinical hypocalcemia, and these effects were observed in the first 48 to 72 h after calving. The diet with negative DCAD tended to improve the intensity of oxidative burst activity of neutrophils in all cows prepartum and increased the intensity of phagocytosis in parous cows prepartum and the proportion of neutrophils with killing activity in parous cows postpartum (58.5 vs. 67.6%). Feeding calcidiol improved the proportion of neutrophils with oxidative burst activity (60.0 vs. 68.7%), reduced the incidences of retained placenta (30.8 vs. 2.5%) and metritis (46.2 vs. 23.1%), and reduced the proportion of cows with multiple diseases in early lactation. Combining the negative DCAD diet with calcidiol reduced morbidity by at least 60% compared with any of the other treatments. Cows with morbidity had lower blood ionized Ca and serum total Ca concentrations than healthy cows. Treatments did not affect the daily risk of hyperketonemia in the first 30 d of lactation. Despite the changes in cow health, manipulating the prepartum DCAD did not influence reproduction, but feeding calcidiol tended to increase the rate of pregnancy by 55%, which reduced the median days open by 19. In conclusion, feeding prepartum cows with a diet containing a negative DCAD combined with 3 mg of calcidiol benefited health in early lactation.  相似文献   

11.
《Journal of dairy science》2022,105(2):1199-1210
Dairy cows commonly undergo negative Ca balance accompanied by hypocalcemia after parturition. A negative dietary cation-anion difference (DCAD) strategy has been used prepartum to improve periparturient Ca homeostasis. Our objective was to determine the influence of a negative DCAD diet with different amounts of dietary Ca on the blood acid-base balance, blood gases, and metabolic adaptation to lactation. Multiparous Holstein cows (n = 81) were blocked into 1 of 3 dietary treatments from 252 d of gestation until parturition: (1) positive DCAD diet and low Ca (CON; containing +6.0 mEq/100 g DM, 0.4% DM Ca); (2) negative DCAD diet and low Ca (ND; ?24.0 mEq/100 g DM, 0.4% DM Ca); or (3) negative DCAD diet plus high Ca supplementation (NDCA; ?24.1 mEq/100 g DM, 2.0% DM Ca). There were 28, 27, and 26 cows for CON, ND, and NDCA, respectively. Whole blood was sampled at 0, 24, 48, and 96 h after calving for immediate determination of blood acid-base status and blood gases. Serum samples collected at ?21, ?14, ?7, ?4, ?2, ?1, at calving, 1, 2, 4, 7, 14, 21, and 28 d relative to parturition were analyzed for metabolic components. Results indicated that cows fed ND or NDCA had lower blood pH at calving but greater pH at 24 h after calving compared with CON. Blood bicarbonate, base excess, and total CO2 (tCO2) concentrations of cows in ND and NDCA groups were less than those of cows in CON at calving but became greater from 24 to 96 h postpartum. The NDCA cows had lower blood bicarbonate, base excess, and tCO2 at 48 h and greater partial pressure of oxygen after calving compared with ND. Cows fed ND or NDCA diets had lower serum glucose concentrations than CON cows before calving but no differences were observed postpartum. Serum concentrations of total protein and albumin were greater prepartum for cows in ND and NDCA groups than for those in CON. Postpartum serum urea N and albumin concentrations tended to be higher for ND and NDCA cows. Cows fed ND or NDCA diets had elevated serum total cholesterol concentration prepartum. During the postpartum period, triglycerides and NEFA of cows fed ND or NDCA diets tended to be lower than those of CON. Cows fed the NDCA diet had greater postpartum total cholesterol in serum and lower NEFA concentration at calving than ND. In conclusion, feeding a prepartum negative DCAD diet altered blood acid-base balance and induced metabolic acidosis at calving, and improved protein and lipid metabolism. Supplementation of high Ca in the negative DCAD diet prepartum was more favorable to metabolic adaptation to lactation in dairy cows than the negative DCAD diet with low Ca.  相似文献   

12.
Hay to reduce dietary cation-anion difference for dry dairy cows   总被引:1,自引:0,他引:1  
Timothy grass has a lower dietary cation-anion difference [DCAD = (Na + K) - (Cl + S)] than other cool-season grass species. Growing timothy on low-K soils and fertilizing it with CaCl2 could further decrease its DCAD. The objective of this study was to evaluate the effects of feeding low-DCAD timothy hay on dry dairy cows. Six nonpregnant and nonlactating cows were used in a replicated 3 × 3 Latin square. Treatments were as follows: 1) control diet (control; DCAD = 296 mEq/kg of dry matter); 2) low-DCAD diet based on low-DCAD timothy hay (L-HAY; DCAD = - 24 mEq/kg of dry matter); and 3) low-DCAD diet using HCl (L-HCl; DCAD = - 19 mEq/kg of dry matter). Decreasing DCAD with L-HAY had no effect on dry matter intake (11.8 kg/d) or dry matter digestibility (71.5%). Urine pH decreased from 8.21 to 5.89 when L-HAY was fed instead of the control. Blood parameters that decreased with L-HAY were base excess (− 0.4 vs. 3.8 mM) and HCO3 (23 vs. 27 mM), and blood parameters that increased were Ca2+ (5.3 vs. 5.1 mg/dL), Cl (30.5 vs. 29.5 mg/dL), and Na+ (60.8 vs. 60.1 mg/dL). Compared with the control, L-HAY resulted in more Ca in urine (13.4 vs. 1.2 g/d). Comparing L-HAY with L-HCl, cow dry matter intake tended to be higher (11.5 vs. 9.8 kg/d), and blood pH was higher (7.37 vs. 7.31). Urine pH; total dry matter; Ca, K, P, and Mg apparent absorption; and Ca, K, Na, Cl, S, P, and Mg apparent retention were similar. Absorption as a percentage of intake of Na and Cl was lower for L-HAY as compared with L-HCl. In an EDTA-challenge test, cows fed L-HAY regained their initial level of blood Ca2+ twice as quickly as the control treatment (339 vs. 708 min); there were no differences between L-HAY and L-HCl. This experiment confirms that feeding low-DCAD hay is an effective means of decreasing the DCAD of rations and obtaining a metabolic response in dry dairy cows.  相似文献   

13.
Bone-derived hormones play an important role in metabolism. This study examined the hypothesis that interactions between bone and energy metabolism, particularly those involving osteocalcin, are present in dairy cattle and have feedback mechanisms over time. Associations between metabolites in blood were examined in 32 Holstein cows blocked by parity and milk yield and randomly allocated to diets containing either 0.27 mg/kg dry matter (DM) calcidiol or cholecalciferol for an anticipated intake of 3 mg/d (120,000 IU/d) at 11 kg of DM, and positive (+130 mEq/kg DM) or negative (?130 mEq/kg DM) dietary cation-anion difference (DCAD) from 252 d of gestation to calving. Blood was sampled every 3 d, from 9 d prepartum to 30 d postpartum, and plasma concentrations of vitamin D3, 25-hydroxyvitamin D3, adiponectin, C-telopeptide of type 1 collagen (CTX1), glucose, insulin-like growth factor 1 (IGF1), insulin, undercarboxylated osteocalcin (uOC), and carboxylated osteocalcin (cOC) were determined. Feeding calcidiol compared with cholecalciferol increased plasma concentrations of 25-hydroxyvitamin D3 pre- (264.2 ± 8.0 vs. 61.3 ± 8.0 ng/mL) and postpartum (170.8 ± 6.2 vs. 51.3 ± 6.2 ng/mL) but decreased concentrations of vitamin D3 pre- (1.2 ± 0.6 vs. 14.5 ± 0.6 ng/mL) and postpartum (1.9 ± 0.4 vs. 3.2 ± 0.6 ng/mL). Prepartum, cows fed the negative DCAD diet had reduced concentrations of vitamin D3 and glucose compared with cows fed a positive DCAD. The combination of negative DCAD and cholecalciferol reduced IGF1 concentrations prepartum. The DCAD treatment had no effect on postpartum concentrations of metabolites. Nulliparous cows had increased concentrations of OC, CTX1, IGF1, glucose, and insulin compared with parous cows. Time series analysis identified associations between metabolites on the same day and over 3-d lags up to ±9 d that suggest feedback between 25-hydroxyvitamin D3 and vitamin D3 in the negative lags, indicating that 25-hydroxyvitamin D3 may exert feedback on vitamin D3 but not vice versa. We found evidence of a feedback mechanism between vitamin D3 and IGF1, with positive effect size (ES) on the same day and 3 d later, and negative ES 9 d later, that was more evident in cholecalciferol-fed cows. This suggests an important role of IGF1 in integrating bone metabolism with energy and protein metabolic pathways. Evidence of feedback was found between uOC and particularly cOC with IGF1, with positive ES on the same day but negative ES 6 d before and 6 d after. An association between uOC or cOC and IGF1 has not been previously identified in cattle and suggests that both uOC and cOC may have marked biological activity. Associations between OC and insulin identified in mice were not observed herein, although associations between OC and glucose were similar to those between IGF1 and glucose, supporting associations between glucose, OC, and IGF1. We provide further statistical evidence of crosstalk between vitamin D compounds, bone hormones, and energy metabolism in cattle. In particular, associations between uOC or cOC and IGF1 may provide links between prepartum diets and observations of prolonged increases in milk production and allow better control of peripartum metabolism.  相似文献   

14.
It was hypothesized that a reduction in the dietary cation-anion difference (DCAD) before calving, combined with an increase in Ca intake after calving, would reduce the incidence of periparturient hypocalcaemia and increase milk production in pasture-based dairy cows. Cows (n = 40) were assigned to one of two DCAD levels before calving (i.e., +7 and +50 mEq/100 g). Each group was then assigned to one of two dietary Ca concentrations after calving (i.e., 1.0 and 0.7%) in a 2 x 2 factorial design. The lower DCAD resulted in a nonrespiratory reduction in systemic pH as indicated by a lower urine pH. This acidosis resulted in an increased concentration of Ca in urine before calving. The lower precalving DCAD helped prevent the decline in blood Ca caused by the onset of lactation, even though blood Ca concentration was lower before calving compared with cows receiving a high DCAD. Supplementation of cows with Ca after calving increased plasma Ca concentration on the day of calving and during the subsequent 14 d. Milk production was not affected by pre- or postcalving treatments.  相似文献   

15.
High-producing dairy cows are commonly fed diets containing a high proportion of rapidly degradable starch, which can cause subacute acidosis and reduce dry matter (DM) intake. Because of the properties of nonmetabolizable cations and anions, increasing the dietary cation-anion difference (DCAD = Na + K − Cl − S in mEq/kg of DM) may prevent a drop in DM intake. To test this hypothesis, 48 Holstein cows were blocked into 2 groups of 24 and assigned to two 3 × 3 Latin squares in a split-plot design. Each group received one level of concentrate at either 20% or 40% on a dry matter (DM) basis. The diet containing 20% concentrate was formulated to supply 4% rapidly degradable starch, whereas the diet containing 40% concentrate supplied 22% rapidly degradable starch. Diets in each square were formulated to provide a DCAD of 0, 150, or 300 mEq/kg of DM. The 3 values were obtained by manipulating Na and Cl contents. Intake, 4% fat-corrected milk yield, and milk fat percentage, as well as blood nonesterified fatty acids and β-hydroxybutyrate increased with DCAD, but only on the diet providing 40% concentrate. The yield of trans-10 C18:1 and odd-chain fatty acids decreased with increasing DCAD, whereas trans-11 C18:1 increased. Again, this occurred only with the diet providing 40% concentrate. Blood pH and HCO3 concentration increased along with DCAD, irrespective of the concentrate level. A positive DCAD led to increasing DM intake and fat-corrected milk yield in dairy cows fed highly degradable diets. The mechanism involved may be a localized rumen buffering effect, together with the ability of positive DCAD to maintain blood acid-base status in cows faced with a massive acid input.  相似文献   

16.
Dietary cation-anion difference [DCAD = Na + K − Cl in mEq/kg of dry matter (DM)] increases DM intake (DMI) in cows fed diets containing rapidly degraded starch. Increased DMI of diets containing rapidly degraded starch could potentially exacerbate subacute acidosis. The objective of this study was to determine metabolic effects of increasing DCAD in low and high starch diets. Six cannulated Holstein cows were blocked into 2 groups of 3 cows and assigned to two 3 × 3 Latin squares in a split-plot design. Each group received a level of concentrate at either 20 or 40% on a DM basis. The diet containing 20% concentrate supplied 4% rapidly degraded starch, whereas the diet containing 40% concentrate supplied 22% rapidly degraded starch. Diets in each square were formulated to provide a DCAD of 0, 150, or 300 mEq/kg of DM. The 3 values were obtained by manipulating Na and Cl contents. Increasing the proportion of rapidly degraded starch decreased rumen pH and the acetate to propionate ratio but did not affect digestibility, blood acid-base status, pH of urine, and strong ion excretion. Increasing DCAD increased DMI, the effect being higher when the cows were fed the 40% concentrate diet. Increasing DCAD did not affect mean ruminal pH, molar proportion of VFA, and fiber digestibility; reduced the range of rumen pH decrease during the meal in cows fed the 40% concentrate diet; and strongly increased blood pH and blood HCO3 concentration. Increasing DCAD increased urine pH and modified the urinary excretion of minerals. With low DCAD, 70% of Cl and only 16% of Na were excreted in urine whereas with high DCAD, 33% of Cl and 53% of Na were excreted. These results suggest that DMI of cows fed diets rich in rapidly degraded starch and low DCAD was limited to maintain the blood pH in a physiological range. Increasing DCAD allowed the cows to increase DMI because of the ability of positive DCAD to maintain blood acid-base status. A localized rumen buffering effect could not be excluded and could be linked with a higher amount of HCO3 recycled into the rumen. Main mechanisms involved in regulating blood pH might be renal excretion of protons and strong ions and renal HCO3 reabsorption.  相似文献   

17.
Nine multiparous and 12 primiparous cows were fed diets containing an anionic salt supplement and moderate Ca (0.99%) or high Ca (1.50%) concentrations for 21 d prepartum to determine the effects of dietary Ca concentration on serum and urine electrolytes and on postpartum intake and milk yield. Blood samples were collected during 21 to 1 d prepartum, 0 to 2 d postpartum, and 3 to 21 d postpartum. Dietary cation-anion difference (DCAD) for prepartum diets was approximately −6 mEq/100 g of dry matter (Na + K − Cl − S). Immediately postpartum, cows were fed diets with positive DCAD with greater than 1.00% Ca concentration. Mean serum Ca concentrations 21 to 1 d prepartum, 0 to 2 d postpartum, and 3 to 21 d postpartum were 9.62, 8.41, and 9.38 mg/dL. There were no treatment effects on serum Ca concentration. Mean serum Ca concentration was higher for primiparous than multiparous cows (9.34 vs. 8.93 mg/dL) for the trial and at calving (8.77 vs. 8.13 mg/dL). Mean serum HCO3 and urinary pH, respectively, were 20.32 mEq/L and 5.67 prepartum, 25.82 mEq/L and 7.62 at calving, and 26.08 mEq/L and 8.25 postpartum. No differences due to treatment were observed for serum and urinary concentrations of HCO3, pH, Mg, Na, K, and Cl. Milk yield was similar for 0.99 and 1.50% Ca treatments (22.8 and 20.7 kg/d). Diets containing 0.99 or 1.5% Ca maintained serum Ca at adequate levels around parturition and resulted in similar dry matter intake and postpartum milk yield.  相似文献   

18.
Pregnant Holstein cows, 28 nulliparous and 51 parous, were blocked by parity and milk yield and randomly allocated to receive diets that differed in dietary cation-anion difference (DCAD), +130 or ?130 mEq/kg, and supplemented with either calcidiol or cholecalciferol at 3 mg/11 kg of dry matter from 255 d of gestation until parturition. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 postpartum to evaluate effects of the diets on vitamin D, mineral and bone metabolism, and acid-base status. Blood pH and concentrations of minerals, vitamin D metabolites, and bone-related hormones were determined, as were mineral concentrations and losses in urine and colostrum. Supplementing with calcidiol increased plasma concentrations of 25-hydroxyvitamin D3, 3-epi 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 compared with supplementing with cholecalciferol. Cows fed the diet with negative DCAD had lesser concentrations of vitamin D metabolites before and after calving than cows fed the diet with positive DCAD, except for 25-hydroxyvitamin D2. Feeding the diet with negative DCAD induced a compensated metabolic acidosis that attenuated the decline in blood ionized Ca (iCa) and serum total Ca (tCa) around calving, particularly in parous cows, whereas cows fed the diet with positive DCAD and supplemented with calcidiol had the greatest 1,25-dihydroxyvitamin D3 concentrations and the lowest iCa and tCa concentrations on d 1 and 2 postpartum. The acidogenic diet or calcidiol markedly increased urinary losses of tCa and tMg, and feeding calcidiol tended to increase colostrum yield and increased losses of tCa and tMg in colostrum. Cows fed the diet with negative DCAD had increased concentrations of serotonin and C-terminal telopeptide of type 1 collagen prepartum compared with cows fed the diet with positive DCAD. Concentrations of undercarboxylated and carboxylated osteocalcin and those of adiponectin did not differ with treatment. These results provide evidence that dietary manipulations can induce metabolic adaptations that improve mineral homeostasis with the onset of lactation that might explain some of the improvements observed in health and production when cows are fed diets with negative DCAD or supplemented with calcidiol.  相似文献   

19.
Eight primiparous lactating Holstein cows (47 ± 10 d in milk) fitted with ruminal cannulae were used to determine the effect of dietary cation-anion difference (DCAD) and dietary crude protein (CP) concentration on milk yield and composition, acid-base chemistry, and measures of N metabolism in lactating dairy cows. Treatments were arranged as a 2 × 2 factorial in a randomized complete block design to provide 15 or 17% CP and DCAD of 25 or 50 mEq (Na + K - Cl)/100 g of feed dry matter [15 or 39 mEq (Na + K) - (Cl + S)/100 g of feed dry matter]. High DCAD improved dry matter intake, milk yield, and concentrations of milk fat and protein. An interaction of DCAD and CP was observed for uric acid excretion, an indicator of microbial protein yield. Uric acid excretion was higher for high DCAD than for low DCAD in low CP diets and was similar for low and high DCAD with high CP. Serum bicarbonate concentration, urinary bicarbonate excretion, blood pH, and serum Na were elevated for high DCAD compared with low DCAD. Fractional excretion of Na, K, Cl, and Ca increased for high DCAD. Blood urea N and urinary urea N were greater for high than for low CP diets. No differences due to DCAD were observed for these parameters. Results of this study suggest that, in early lactation cows, blood acid-base chemistry is altered by differences in DCAD that range between the high and low ends of the desired DCAD range. Modifications of acid-base chemistry and the corresponding changes in protein metabolism may allow for more efficient feeding of protein and better nutritional management of the lactating dairy cow.  相似文献   

20.
Forty-two lactating Holstein cows 188 ± 59 d in milk were used in an 8-wk randomized complete block trial with a 2 × 3 factorial arrangement of treatments. The objective was to determine the effects of high dietary cation-anion difference (DCAD) and K:Na ratio on milk yield and composition and blood acid-base chemistry. Treatments included DCAD concentrations of 45 or 60 mEq (Na + K −Cl)/100 g of feed dry matter and K:Na ratios of 2:1, 3:1, or 4:1. Mean DCAD values were later determined to be 41 and 58. Dry matter intake was similar across treatments. Yield of milk and energy corrected milk were lower for the 3:1 K:Na ratio compared with 2:1 and 4:1 ratios. Blood urea N was lower for the highest DCAD, suggesting that DCAD possibly reduced protein degradation or altered protein metabolism and retention. Mean temperature-humidity index was 75.6 for the duration of the trial, exceeding the critical value of 72 for all weeks during the treatment period. Cows maintained relatively normal body temperature with mean a.m. and p.m. body temperature of 38.5 and 38.7°C, respectively. These body temperatures suggest that cows were not subject to extreme heat stress due to good environmental control. Results of this trial indicate that the greatest effect on milk yield occurs when either Na or K is primarily used to increase DCAD, with the lowest yield of energy-corrected milk at a 3:1 K:Na ratio (27.1 kg/d) compared with ratios of 2:1 (29.3 kg/d) and 4:1 (28.7 kg/d). Results also suggest that greater DCAD improves ruminal N metabolism or N utilization may be more efficient with a high DCAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号