首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of our study was to evaluate the dose-response effects of a stearic acid (C18:0)-enriched supplement on nutrient digestibility, production responses, and the maximum amount of C18:0 that can be incorporated into the milk fat of dairy cows. Multiparous Holstein cows (n = 32; 145 ± 66 d in milk) with a wide range in milk yield (30 to 70 kg/d) were blocked by milk yield and assigned to replicated 4 × 4 Latin squares. Treatments were diets supplemented with a C18:0-enriched supplement (SA; 93% C18:0) at 0, 0.80, 1.50, or 2.30% of diet dry matter (DM). Periods were 21 d with the final 5 d used for data and sample collection. Dry matter intake increased linearly as SA supplementation increased. Supplementation of SA had no effect on the yield of milk or milk components. Due to the increase in DM intake, SA linearly reduced the ratio of energy-corrected milk to DM intake. Supplementation of SA did not affect body weight. Increasing SA reduced digestibility of 16-carbon, 18-carbon, and total fatty acids (FA), with the reduction in digestibility of 18-carbon FA being approximately 30 percentage units from the 0.0 to 2.30% SA supplemented diets. Supplementation of SA linearly increased concentrations of preformed milk fatty acids (FA) but did not affect the yield of preformed milk FA. Yields of C18:0 plus cis-9 C18:1 were increased by SA supplementation; however, the increase from 0 to 2.3% SA was only 16 g/d. The concentration and yield of de novo and 16-carbon milk FA were unaffected by SA supplementation. In conclusion, increasing doses of SA decreased FA digestibility and had little effect on production parameters. Although SA increased the yield of C18:0 and cis-9 C18:1 in milk fat, it had no overall effect on milk fat yield. The lack of production responses to a C18:0-enriched fat supplement was most likely associated with the marked decrease in FA digestibility.  相似文献   

2.
《Journal of dairy science》2021,104(9):9956-9966
The objective of our study was to determine the effects of altering the ratio of stearic (C18:0; SA) and oleic (cis-9 C18:1; OA) acids in supplemental fatty acid (FA) blends on FA digestibility and milk yield of dairy cows. Eight multiparous Holstein cows (mean ± SD; 157 ± 11.8 d in milk) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design with 14-d periods. Digestibility and production data were collected during the last 4 d of each period. The treatments were an unsupplemented control diet (CON), and 3 diets incorporating FA supplement blends at 1.4% of diet dry matter (DM) containing (as a % of total FA) 50% SA and 10% OA, 40% SA and 20% OA, or 30% SA and 30% OA. The FA blends were balanced to contain 33% palmitic, 5% linoleic, and <0.5% linolenic acids. The FA supplements replaced soyhulls in the CON diet. Preplanned contrasts were as follows: (1) overall effect of FA treatments [CON vs. the average of the FA-supplemented diets; (50:10 + 40:20 + 30:30)/3], (2) the linear effect of OA inclusion in the supplemental FA blend, and (3) the quadratic effect of OA inclusion in the supplemental FA blend. There was no effect of treatment on DM intake, but the replacement of soyhulls in the FA treatments decreased neutral detergent fiber intake. Overall, compared with CON, FA treatments increased DM and neutral detergent fiber digestibility, and increasing OA within FA treatments quadratically increased digestibility of DM and neutral detergent fiber. Overall, FA treatments increased the intake of total, 16-carbon, and 18-carbon FA, decreased the digestibility of total and 18-carbon FA, but increased absorption of total, 16-carbon, and 18-carbon FA. Within FA treatments, increasing OA linearly increased the digestibility of total, 16-carbon, and 18-carbon FA, as well as the absorption of total, 16-carbon, and 18-carbon FA. Overall, FA treatments increased the yields of milk, energy-corrected milk, and milk fat, and tended to increase milk protein yield. Compared with CON, FA treatments had no effect on the yield of de novo milk FA and increased the yields of mixed and preformed milk FA. Within FA treatments, increasing OA did not affect the yields of milk or milk components, linearly decreased the yield of de novo FA, and quadratically affected the yield of mixed and preformed milk FA. Overall, FA treatments increased plasma nonesterified fatty acids but did not affect β-hydroxybutyrate or insulin. Within FA treatments, increasing OA quadratically affected plasma nonesterified fatty acids, and tended to linearly increase β-hydroxybutyrate and quadratically affect insulin. In conclusion, supplemental FA blends containing different ratios of SA and OA did not affect DM intake but increased the yields of milk and milk components. Supplemental FA blends also increased digestibility of DM and neutral detergent fiber and decreased digestibility of total and 18-carbon FA compared with CON. Although increasing OA within FA supplements did not alter milk production, increasing OA within FA supplements increased total, 16-carbon, and 18-carbon FA digestibility and FA absorption. Further research is required to determine longer term effects of SA and OA on nutrient digestion and partitioning and opportunities for maintaining or improving FA digestibility with increasing SA intake and availability in the small intestine.  相似文献   

3.
《Journal of dairy science》2022,105(4):3102-3112
We evaluated the effects of abomasal infusion of emulsifiers on fatty acid (FA) digestibility and milk production of lactating dairy cows. All emulsifiers examined were polysorbates, nonionic surfactants, consisting of a polyethoxylated sorbitan esterified with FA. The polysorbates tested in this study consisted of the same polyethoxylated sorbitan base but differed by the FA esterified to it. Eight rumen-cannulated multiparous cows (89 ± 13 d in milk) were assigned to a treatment sequence in 4 × 4 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water only (CON) or 30 g/d of different emulsifiers as follows: polysorbate-C16:0 (T40), polysorbate-C18:0+C16:0 (T60), and polysorbate-C18:1 (T80). Emulsifiers were dissolved in water and delivered at 6-h intervals (total daily infusion was divided into 4 equal infusions per day). Cows were fed the same diet that contained (% diet dry matter) 32.1% neutral detergent fiber, 15.7% crude protein, 25.8% starch, and 3.32% FA (including 1.92% FA from a saturated FA supplement containing 34.2% C16:0 and 47.7% C18:0). The T80 treatment increased total FA digestibility compared with CON (5.40 percentage units) and T60 (3.90 percentage units) and tended to increase it compared with T40. Also, T40 tended to increase and T80 increased (4.80 percentage units) 16-carbon FA digestibility compared with CON. The T80 treatment increased 18-carbon FA digestibility compared with the other treatments. The T40 treatment tended to increase and T80 increased total FA absorption compared with CON (53 g/d) and T60 (52 g/d). Both T40 and T80 increased the absorption of 16-carbon FA compared with CON and T60. The T60 treatment did not differ from CON for any digestibility variable. Both T40 and T80 increased the yields of milk fat, 3.5% fat-corrected milk, and de novo, mixed, and preformed milk FA compared with CON. In conclusion, not all emulsifiers increased FA digestibility. Compared with CON, T80 increased the digestibility and absorption of total, 16-, and 18-carbon FA. The T40 treatment tended to increase and T80 increased total FA absorption and the yields of milk fat and 3.5% FCM compared with CON. Milk fat yield was increased by increases in de novo, mixed, and preformed milk FA. In our short-term infusion study, results suggest that the predominant FA present in the polysorbate affects its ability to improve FA digestibility. Overall, FA digestibility and absorption were improved the most when cows received the T80 treatment.  相似文献   

4.
The objective of our study was to evaluate the effects of feeding triglyceride and fatty acid (FA) supplements enriched in palmitic acid (PA; C16:0) on production and nutrient digestibility responses of mid-lactation dairy cows. Fifteen Holstein cows (137 ± 49 d in milk) were randomly assigned to a treatment sequence in a 3 × 3 Latin square design. Treatments consisted of a control diet (CON; no added PA) or 1.5% FA added as either a FA supplement (PA-FA) or a triglyceride supplement (PA-TG). The PA supplements replaced soyhulls, and diets were balanced for glycerol content. Periods were 21 d in length with sample and data collection occurring during the final 5 d. Compared with CON, PA treatments increased dry matter (66.5 vs. 63.9%) and neutral detergent fiber (NDF) apparent digestibility (42.0 vs. 38.2%). Although PA treatments tended to increase 18-carbon FA apparent digestibility (79.1 vs. 77.9%), PA treatments decreased 16-carbon (63.1 vs. 75.8%) and total FA (72.0 vs. 76.5%) apparent digestibilities compared with CON. The PA treatments increased milk fat content (3.60 vs. 3.41%), milk fat yield (1.70 vs. 1.60 kg/d), yield of 16-carbon milk FA (570 vs. 471 g/d), 3.5% fat-corrected milk (47.6 vs. 46.5 kg/d), and energy-corrected milk (47.4 vs. 46.6 kg/d) compared with CON. The PA treatments did not affect dry matter intake (28.5 vs. 29.2 kg/d), milk yield (47.0 vs. 47.4 kg/d), milk protein yield (1.42 vs. 1.45 kg/d), milk lactose yield (2.29 vs. 2.31 kg/d), yield of <16-carbon milk FA (360 vs. 370 g/d), yield of >16-carbon milk FA (642 vs. 630 g/d), body weight (720 vs. 723 kg), or body condition score (3.14 vs. 3.23). We did not observe differences in digestibilities of dry matter, NDF, and 18-carbon FA between PA-TG and PA-FA. In contrast, PA-FA increased 16-carbon (68.6 vs. 57.6%) and total FA apparent digestibility (73.8 vs. 70.1%) compared with PA-TG. This resulted in PA-FA supplementation increasing the apparent digestibility of the PA supplement by ~10 percentage points compared with PA-TG. Compared with PA-TG, PA-FA increased 16-carbon FA intake by 60 g/d, absorbed 16-carbon FA by 86 g/d, and absorbed total FA by 85 g/d. Compared with PA-TG, PA-FA increased dry matter intake (29.1 vs. 27.8 kg/d), yield of 16-carbon milk FA (596 vs. 545 g/d), and tended to increase milk yield (47.6 vs. 46.4 kg/d), milk fat yield (1.70 vs. 1.66 kg/d), and 3.5% fat-corrected milk (48.1 vs. 47.2 kg/d). In conclusion, the production response of dairy cows to PA tended to be greater for a FA supplement compared with a triglyceride supplement. Overall, PA increased NDF digestibility, milk fat yield, energy-corrected milk, and feed efficiency in mid-lactation dairy cows.  相似文献   

5.
《Journal of dairy science》2019,102(11):9842-9856
The objective of our study was to evaluate the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on nutrient digestibility, energy partitioning, and production responses of lactating dairy cows. Cows were blocked by milk yield and assigned to 3 groups (12 cows per group) in a main plot: low (45.2 ± 1.7 kg/d), medium (53.0 ± 1.6 kg/d), and high (60.0 ± 1.9 kg/d). Within each production group, a truncated Latin square arrangement of fatty acid (FA) treatments was used in 2 consecutive 35-d periods. The FA treatments supplemented at 1.5% of diet dry matter were (1) 80:10 (80% C16:0 + 10% cis-9 C18:1), (2) 73:17 (73% C16:0 + 17% cis-9 C18:1), (3) 66:24 (66% C16:0 + 24% cis-9 C18:1), and (4) 60:30 (60% C16:0 + 30% cis-9 C18:1). Treatment × production group interactions were observed for yields of milk, fat-corrected milk, energy-corrected milk, milk fat, milk protein, and milk lactose and energy partitioned to milk. Increasing cis-9 C18:1 in FA treatments reduced fat-corrected milk, energy-corrected milk, and milk energy output in low-producing cows but increased these in high-producing cows. Increasing cis-9 C18:1 in FA treatments did not affect milk yield, milk protein yield, and milk lactose yield in low- and medium-producing cows but increased these in high-producing cows. Regardless of production level, there was no effect of treatments on dry matter intake; however, increasing cis-9 C18:1 in FA treatments increased body weight change and body condition score change. Increasing cis-9 C18:1 in FA treatments increased total FA digestibility due to a linear increase in 16- and 18-carbon FA digestibilities. Interactions between FA treatments and production level were observed for the yield of milk fat and milk FA sources. In low-producing cows, increasing cis-9 C18:1 in FA treatments decreased milk fat yield due to a decrease in de novo and mixed milk FA without changes in preformed milk FA. In contrast, in high-producing cows, increasing cis-9 C18:1 in FA treatments increased milk fat yield due to an increase in de novo and preformed milk FA. Our results indicate that high-producing dairy cows (averaging 60 kg/d) responded better to a fat supplement containing more cis-9 C18:1, whereas low-producing cows (averaging 45 kg/d) responded better to a supplement containing more C16:0.  相似文献   

6.
Fat supplements based on palmitic acid (PA) or stearic acid (SA) are expected to have different effects on milk production and nutrient metabolism in lactating dairy cows. In this study, the effects of prilled fat supplements containing different levels of PA and SA were tested in 12 high-producing multiparous cows (pretrial milk yield = 53.4 ± 8.7 kg/d; mean ± SD) arranged in a 4 × 4 Latin square design with 21-d periods. Treatments were control (CON; no supplemental fat), an enriched PA supplement (HP; 91% C16:0), an enriched SA supplement (HS; 92.5% C18:0), and a blend of PA and SA (INT) fed at 1.95% of diet dry matter. All supplements contained oleic acid at approximately 5% of fatty acids. The HP treatment decreased dry matter intake (DMI) by 1.9 kg/d and 1.1 kg/d compared with SA and CON, respectively. Milk yield was not changed by treatment, but INT increased energy-corrected milk by 2.7 kg/d compared with HS. The HP and INT treatments increased milk fat yield by 0.11 and 0.14 kg/d compared with CON, respectively. Additionally, HP decreased yield of <16 carbon fatty acids (FA; de novo synthesized) by 44 g/d and 43 g/d compared with INT and CON, respectively. The HP treatment increased 16-carbon FA (mixed source) by 155 g/d compared with CON and 64 g/d relative to INT. No effect of treatment on apparent total-tract digestibility of dry matter, organic matter, or neutral detergent fiber was detectable. The INT and HS treatments decreased total-tract digestibility of 16-carbon FA by 10.3 and 10.5 percentage units compared with HP, respectively. Total-tract digestibility of 18-carbon FA was lowest in the HS diet and highest with HP. In conclusion, supplementing PA increased milk fat yield compared with control and SA, but supplementing a mixture of PA and SA increased energy-corrected milk without decreasing intake. The FA profile of fat supplements influences their digestibility and effects on DMI and milk and milk fat synthesis.  相似文献   

7.
This article is the second from an experiment that determined the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on digestibility, production, and metabolic responses of dairy cows during the immediate postpartum. This article elaborates on the effect of these diets on nutrient digestibility, energy balance, and metabolism. Fifty-six multiparous cows were used in a randomized complete block design and randomly assigned to 1 of 4 treatments fed from 1 to 24 d in milk. The treatments were: (1) control (CON) diet not supplemented with fatty acids (FA); (2) diet supplemented with a FA blend containing 80% C16:0 and 10% cis-9 C18:1 (80:10); (3) diet supplemented with a FA blend containing 70% C16:0 and 20% cis-9 C18:1 (70:20); and (4) diet supplemented with a FA blend containing 60% C16:0 and 30% cis-9 C18:1 (60:30). The FA supplement blends were added at 1.5% of diet dry matter by replacing soyhulls in the CON diet. Three preplanned contrasts were used to compare treatment differences: (1) CON versus FA-supplemented diets, (80:10 + 70:20 + 60:30)/3; (2) the linear effect of cis-9 C18:1 inclusion in diets; and (3) the quadratic effect of cis-9 C18:1 inclusion in diets. The FA-supplemented diets increased digestibility of dry matter, neutral detergent fiber, 18-carbon FA, and total FA compared with CON. We observed a tendency for an interaction between treatment and time for the digestibility of 18-carbon and total FA because the difference in digestibility between CON and 60:30 treatments tended to increase over time. Increasing dietary cis-9 C18:1 increased linearly the digestibility of dry matter, neutral detergent fiber, 16-carbon, 18-carbon, and total FA. Interestingly, total absorbed FA was positively related to milk, milk fat yield, energy-corrected milk, plasma insulin, and albumin, and negatively related to plasma nonesterified FA (NEFA) and body weight loss. The FA-supplemented diets increased intake of digestible energy, metabolizable energy, and net energy for lactation compared with CON. Compared with CON, FA-supplemented diets increased milk energy output and tended to increase negative energy balance. Increasing dietary cis-9 C18:1 increased intake of digestible energy, metabolizable energy, and net energy for lactation. Although increasing dietary cis-9 C18:1 did not affect milk energy output and energy for maintenance, increasing dietary cis-9 C18:1 improved energy balance. Compared with CON, FA-supplemented diets increased plasma insulin, but we did not observe differences between CON and FA-supplemented diets for NEFA and albumin. Increasing cis-9 C18:1 in FA treatments linearly decreased plasma NEFA and tended to linearly increase insulin and β-hydroxybutyrate. During the carryover period, no treatment differences in blood metabolites were observed. Our results indicate that feeding FA supplements containing C16:0 and cis-9 C18:1 during the immediate postpartum period increased nutrient digestibility, energy intake, and milk energy output compared with a non-fat-supplemented control diet. Increasing dietary cis-9 C18:1 increased energy intake, reduced markers of body fat mobilization, and improved energy balance during the immediate postpartum.  相似文献   

8.
Increasing the α-linolenic acid (LNA; 18:3 cis-9,cis-12,cis-15) content of milk fat might help promote consumers’ health. The objective of this study was to determine the potential to alter the content of LNA in milk by duodenal infusion of a free fatty acid mixture rich in LNA. Four multiparous lactating Chinese Holstein cows fitted with duodenal cannulas were administered 2 treatments in a crossover design: an LNA-rich fatty acid infusion at varying concentrations (0, 40, 80, 120, and 160 g/d) versus a basal infusate control. Dry matter intake was not affected by LNA infusions. Milk production tended to decrease and was quadratically affected as LNA infusion increased, but 4% fat-corrected milk yield was not changed. Milk fat content tended to increase linearly with LNA infusion. Milk protein content was not changed by LNA infusion, whereas milk lactose content and yield were decreased quadratically as LNA infusion increased. Increasing the amount of LNA infused into the duodenum linearly increased concentrations of 18:3 cis-9,cis-12,cis-15 (0.61 to 25.4 g/100 g of total fatty acids) and 18:2 cis-9,cis-12 in milk fat. Increasing LNA decreased the percentages of 4:0, 14:0, and 16:0 fatty acids linearly. Increasing LNA also linearly decreased the percentages of 18:1 cis-9 and 18:2 cis-9,trans-11 in milk fat. Milk fat content of 20:5 cis-5,cis-8,cis-11,cis-14,cis-17 was quadratically affected, whereas concentrations of 18:0, 18:1 trans-9, 18:1 trans-11, and 18:2 trans-10,cis-12 were not affected. Increasing the supply of 18:3 cis-9,cis-12,cis-15 to the small intestine linearly increased 18:3 cis-9,cis-12,cis-15 in milk fat and markedly altered milk fat composition.  相似文献   

9.
Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100 g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100 g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1 g/100 g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk components between the FFA and TAG treatments. The UFA treatments increased feed efficiency (energy-corrected milk/DM intake), averaging 1.42, 1.53, and 1.48 for CON, FFA, and TAG treatments, respectively. Although milk fat yield was not affected, the UFA treatments decreased the yield of de novo (<16-carbon) synthesized FA (40 g/d) and increased the yield of preformed (>16-carbon) FA (134 g/d). Yield of FA from both sources (16-carbon FA) was reduced by the UFA treatments but to a different extent for FFA versus TAG (72 vs. 100 g/d). An increase was detected in the concentration of trans-10 C18:1 and a trend for an increase in trans-10,cis-12 C18:2 and trans-9,cis-11 C18:2 for the UFA treatments compared with CON. Under the dietary conditions tested, UFA treatments supplemented at 2% diet DM as either soybean FA distillate or soybean oil increased milk yield but did not effectively cause a reduction in milk fat yield, with preformed FA replacing de novo synthesized FA in milk fat. Further research is required to determine if the response to changes in dietary free and esterified FA concentrations is different in diets that differ in their risk for milk fat depression.  相似文献   

10.
We evaluated the effects of fatty acid (FA) supplement blends containing 60% palmitic acid (C16:0) and either 30% stearic acid (C18:0) or 30% oleic acid (cis-9 C18:1) on nutrient digestibility and milk production of low- and high-producing dairy cows. Twenty-four multiparous Holstein cows [118 ± 44 d in milk (DIM)] were divided into 2 blocks by milk production and then randomly assigned to treatment sequence in four 3 × 3 Latin squares within production level, balanced for carryover effects in three consecutive 21-d periods. Cows were blocked by milk yield and assigned to 1 of 2 groups (n = 12 per group): (a) low group (42.5 ± 3.54 kg/d; 147 ± 42 DIM) and (b) high group (55.8 ± 3.04 kg/d; 101 ± 34 DIM). Commercially available fat supplements were combined to provide treatments that consisted of the following: (1) control (CON; diet with no supplemental FA), (2) FA supplement blend containing 60% C16:0 and 30% C18:0 (PA+SA), and (3) FA supplement blend containing 60% C16:0 and 30% cis-9 C18:1 (PA+OA) The FA blends were fed at 1.5% of dry matter (DM) and replaced soyhulls from CON. Preplanned contrasts were (1) overall effect of FA treatments [CON vs. the average of the FA treatments (FAT); 1/2 (PA+SA + PA+OA)], and (2) effect of FA supplement (PA+SA vs. PA+OA). Regardless of production level, overall FAT reduced DMI compared with CON. Also, regardless of level of milk production, PA+OA increased total-tract FA digestibility compared with PA+SA. Treatment by production level interactions were observed for neutral detergent fiber (NDF) digestibility, total FA intake, and the yields of 3.5% fat-corrected milk (FCM), energy-corrected milk (ECM), and milk fat. In low-producing cows, FAT increased DM and NDF digestibility compared with CON. In high-producing cows PA+SA increased DM and NDF digestibility compared with PA+OA. In low-producing cows, PA+SA increased 3.5% FCM, ECM, and milk fat yield compared with PA+OA. However, in high-producing cows PA+OA tended to increase 3.5% FCM compared with PA+SA. In conclusion, low-producing cows responded better to a FA blend containing 60% C16:0 and 30% C18:0, whereas high-producing dairy cows responded more favorably to a FA blend containing 60% C16:0 and 30% cis-9 C18:1. However, further research is required to validate our observations that higher-yielding cows have improved production responses when supplemented with cis-9 C18:1 compared with C18:0.  相似文献   

11.
Increasing the oleic acid (18:1 cis-9) content of milk fat might be desirable to meet consumer concerns about dietary healthfulness and for certain manufacturing applications. The extent to which milk fat could be enriched with oleic acid is not known. Increasing the intestinal supply of polyunsaturated fatty acids decreases dry matter intake (DMI) in cows, but the effects of oleic acid have not been quantified. In a crossover design, 4 multiparous Holstein cows were abomasally infused with increasing amounts (0, 250, 500, 750, or 1,000 g/d) of free fatty acids from high-oleic sunflower oil (HOSFA) or with carrier alone. Continuous infusions (20 to 22 h/d) were for 7 d at each amount. Infusions were homogenates of HOSFA with 240 g/d of meat solubles and 11.2 g/d of Tween 80; controls received carrier only. The HOSFA contained (by wt) 2.4% 16:0, 1.8% 18:0, 91.4% 18:1 cis-9, and 2.4% 18:2. The DMI decreased linearly (range 22.0 to 5.8 kg/d) as the infused amount of HOSFA increased. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, and energy decreased as the infusion increased to 750 g/d and then increased when 1,000 g/d was infused. Digestibility of total fatty acids increased linearly as infused fatty acids increased. Yields of milk, fat, true protein, casein, and total solids decreased quadratically as infused amounts increased; decreases were greatest when 750 or 1,000 g/d of HOSFA were infused. Concentrations of fat and total solids increased at the higher amounts of HOSFA. The volume mean diameter of milk fat droplets and the diameter below which 90% of the volume of milk fat is contained both increased as HOSFA infusion increased. Concentrations of short-chain fatty acids, 12:0, 14:0, and 16:0 in milk fat decreased linearly as HOSFA increased. The concentration of 18:1 cis-9 (19.4 to 57.4% of total fatty acids) increased linearly as HOSFA infusion increased. Concentrations of 18:1 cis-9 in blood triglyceride-rich lipoproteins increased linearly as infusion increased, whereas contents of 14:0, 16:0, 18:0, total 18:1 trans, and 18:2n-6 decreased linearly. The composition and physical characteristics of milk fat can be altered markedly by an increased intestinal supply of 18:1 cis-9, which could influence processing characteristics and the healthfulness of milk fat. However, an increased supply of free 18:1 cis-9 to the intestine decreased DMI and milk production.  相似文献   

12.
Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91 d in milk) were used in replicated 4 × 4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12 kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5 g/100 g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45 g/100 g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8 g/100 g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.  相似文献   

13.
The objective of this study was to evaluate the effects of varying the ratio of dietary palmitic (C16:0), stearic (C18:0), and oleic (cis-9 C18:1) acids in basal diets containing soyhulls or whole cottonseed on nutrient digestibility, energy partitioning, and production response of lactating dairy cows. Twenty-four mid-lactation multiparous Holstein cows were used in a split-plot Latin square design. Cows were allocated to a main plot receiving either a basal diet with soyhulls (SH, n = 12) or a basal diet with whole cottonseed (CS, n = 12) that was fed throughout the experiment. Within each plot a 4 × 4 Latin square arrangement of treatments was used in 4 consecutive 21-d periods. Treatments were (1) control (CON; no supplemental fat), (2) high C16:0 supplement [PA; fatty acid (FA) supplement blend provided ~80% C16:0], (3) C16:0 and C18:0 supplement (PA+SA; FA supplement blend provided ~40% C16:0 + ~40% C18:0), and (4) C16:0 and cis-9 C18:1 supplement (PA+OA; FA supplement blend provided ~45% C16:0 + ~35% cis-9 C18:1). Interactions between basal diets and FA treatments were observed for dry matter intake (DMI) and milk yield. Among the SH diets, PA and PA+SA increased DMI compared with CON and PA+OA treatments, whereas in the CS diets PA+OA decreased DMI compared with CON. The PA, PA+SA, and PA+OA treatments increased milk yield compared with CON in the SH diets. The CS diets increased milk fat yield compared with the SH diets due to the greater yield of de novo and preformed milk FA. The PA treatment increased milk fat yield compared with CON, PA+SA, and PA+OA due to the greater yield of mixed-source (16-carbon) milk FA. The PA treatment increased 3.5% fat-corrected milk compared with CON and tended to increase it compared with PA+SA and PA+OA. The CS diets increased body weight (BW) change compared with the SH diets. Additionally, PA+OA tended to increase BW change compared with CON and PA and increased it in comparison with PA+SA. The PA and PA+OA treatments increased dry matter and neutral detergent fiber digestibility compared with PA+SA and tended to increase them compared with CON. The PA+SA treatment reduced 16-carbon, 18-carbon, and total FA digestibility compared with the other treatments. The CS diets increased energy partitioning toward body reserves compared with the SH diets. The PA treatment increased energy partitioning toward milk compared with CON and PA+OA and tended to increase it compared with PA+SA. In contrast, PA+OA increased energy partitioned to body reserves compared with PA and PA+SA and tended to increase it compared with CON. In conclusion, milk yield responses to different combinations of FA were affected by the addition of whole cottonseed in the diet. Among the combinations of C16:0, C18:0, and cis-9 C18:1 evaluated, fat supplements with more C16:0 increased energy output in milk, whereas fat supplements with more cis-9 C18:1 increased energy storage in BW. The combination of C16:0 and C18:0 reduced nutrient digestibility, which most likely explains the lower performance observed compared with other treatments.  相似文献   

14.
Flaxseed has been extensively used as a supplement for dairy cows because of its high concentrations of energy and the n-3 fatty acid (FA) cis-9,cis-12,cis-15 18:3. However, limited information is available regarding the effect of ground flaxseed on dry matter intake (DMI), ruminal fermentation, and nutrient utilization in grazing dairy cows. Twenty multiparous Jersey cows averaging (mean ± standard deviation) 111 ± 49 d in milk in the beginning of the study were used in a randomized complete block design to investigate the effects of supplementing herbage (i.e., grazed forage) with ground corn-soybean meal mix (control diet = CTRL) or ground flaxseed (flaxseed diet = FLX) on animal production, milk FA, ruminal metabolism, and nutrient digestibility. The study was conducted from June to September 2013, with data and sample collection taking place on wk 4, 8, 12, and 16. Cows were fed a diet formulated to yield a 60:40 forage-to-concentrate ratio consisting of (dry matter basis): 40% cool-season perennial herbage, 50% partial total mixed ration, and 10% of ground corn-soybean meal mix or 10% ground flaxseed. However, estimated herbage DMI averaged 5.59 kg/d or 34% of the total DMI. Significant treatment by week interactions were observed for milk and blood urea N, and several milk FA (e.g., trans-10 18:1). No significant differences between treatments were observed for herbage and total DMI, milk yield, feed efficiency, concentrations and yields of milk components, and urinary excretion of purine derivatives. Total-tract digestibility of organic matter decreased, whereas that of neutral detergent fiber increased with feeding FLX versus CTRL. No treatment effects were observed for ruminal concentrations of total volatile FA and NH3-N, and ruminal proportions of acetate and propionate. Ruminal butyrate tended to decrease, and the acetate-to-propionate ratio decreased in the FLX diet. Most saturated and unsaturated FA in milk fat were changed. Specifically, milk proportion of cis-9,cis-12,cis-15 18:3, Σn-3 FA, and Σ18C FA increased, whereas that of cis-9,cis-12 18:2, Σn-6 FA, Σ odd-chain FA, Σ<16C FA, and Σ16C FA decreased with feeding FLX versus the CTRL diet. In conclusion, feeding FLX did not change yields of milk and milk components, but increased milk n-3 FA. Therefore, costs and industry adoption of premiums for n-3-enriched milk will determine the adoption of ground flaxseed in pasture-based dairy farms.  相似文献   

15.
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.  相似文献   

16.
The effect of a high-palmitic acid fat supplement was tested in 12 high-producing (mean = 42.1 kg/d) and 12 low-producing (mean = 28.9 kg/d) cows arranged in a replicated 3 × 3 Latin square design. Experimental periods were 21 d, with 18 d of diet adaptation and 3 d of sample collection. Treatments were (1) control (no supplemental fat), (2) high-palmitic acid (PA) supplement (84% C16:0), and (3) Ca salts of palm fatty acid (FA) supplement (Ca-FA). The PA supplement had no effect on milk production, but decreased dry matter intake by 7 and 9% relative to the control in high- and low-producing cows, respectively, and increased feed efficiency by 8.5% in high-producing cows compared with the control. Milk fat concentration and yield were not affected by PA relative to the control in high- or low-producing cows, although PA increased the yield of milk 16-C FA by more than 85 g/d relative to the control. The Ca-FA decreased milk fat concentration compared with PA in high-, but not in low-producing cows. In agreement, Ca-FA dramatically increased milk fat concentration of trans-10 C18:1 and trans-10, cis-12 conjugated linoleic acid (>300%) compared with PA in high-producing cows, but not in low-producing cows. No effect of treatment on milk protein concentration or yield was detected. The PA supplement also increased 16-C FA apparent digestibility by over 10% and increased total FA digestibility compared with the control in high- and low-producing cows. During short-term feeding, palmitic acid supplementation did not increase milk or milk fat yield; however, it was efficiently absorbed, increased feed efficiency, and increased milk 16-C FA yield, while minimizing alterations in ruminal biohydrogenation commonly observed for other unsaturated fat supplements. Longer-term experiments will be necessary to determine the effects on energy balance and changes in body reserves.  相似文献   

17.
This study is a meta-analysis of the response of milk long-chain fatty acid (FA) yield and composition to lipid supply, based on published experiments reporting duodenal FA flows or duodenal lipid infusions and milk FA composition (i.e., 39 experiments reporting 139 experimental treatments). Analysis of these data underlined the interdependence between milk yields of C18 and short- and medium-chain (C4 to C16) FA. Lipid supplementation (producing an increase in duodenal C18 flow) decreased linearly milk C4 to C16 yield (−0.26 g of C4 to C16 produced per gram of duodenal C18 flow increase) and increased quadratically milk C18 yield. When these 2 effects increased the percentage of C18 in milk FA up to a threshold value (around 52% of total FA), then milk C18 yield was limited by C4 to C16 yield, decreasing the C18 transfer efficiency from duodenum to milk with high-lipid diets. Moreover, for a given duodenal C18 flow, a decrease in milk C4 to C16 yield induced a decrease in milk C18 yield. Despite high variations in C18 transfer efficiency between duodenum and milk, for a given experimental condition, the percentages of C18 FA in milk total C18 could be predicted from their percentages in duodenal C18, and the percentages at the duodenum and in milk were very similar when mammary desaturation was taken into account (i.e., considering the sums of substrates and products of mammary desaturase). The estimated amounts of 18:0, trans-11-, and trans-13-18:1 desaturated by the mammary gland were a linear function of their mammary uptake, and mammary desaturation was responsible for 80, 95, and 81%, respectively, of the yield of their products (i.e., cis-9-18:1; cis-9, trans-11-, and cis-9, trans-13-18:2). Thus, mammary FA desaturation capacity did not seem to be a limiting factor in the experimental conditions published so far.  相似文献   

18.
《Journal of dairy science》2023,106(4):2347-2360
This study consists of milk fatty acid (FA) data collected during 2 in vivo experiments. For this study, 8 cows from each experiment were included in a replicated 4 × 4 Latin square design. At the start of experiment 1 (Exp1) cows were at (mean ± standard deviation) 87 ± 34.6 d in milk, 625 ± 85.0 kg of body weight, and 32.1 ± 4.17 kg/d milk yield and at the start of experiment 2 (Exp2) cows were at 74 ± 18.2 d in milk, 629 ± 87.0 kg of body weight, and 37.0 ± 3.2 kg/d milk yield. In Exp1, we examined the effects of gradual replacement of barley with hulled oats (oats with hulls) on milk FA composition. The basal diet was grass silage and rapeseed meal (58 and 10% of diet DM, respectively), and the 4 grain supplements were formulated so that barley was gradually replaced by hulled oats at levels of 0, 33, 67, and 100% on dry matter basis. In Exp2, we examined (1) the effects of replacing barley with both hulled and dehulled oats (oats without hulls) and (2) the effects of gradual replacement of hulled oats with dehulled oats on milk FA composition. The basal diet was grass silage and rapeseed meal (60 and 10% of diet DM, respectively), and the 4 pelleted experimental concentrates were barley, hulled oats, a 50:50 mixture of hulled and dehulled oats, and dehulled oats on dry matter basis. In Exp1, gradual replacement of barley with hulled oats decreased relative proportions of 14:0, 16:0, and total saturated FA (SFA) in milk fat linearly, whereas proportions of 18:0, 18:1, total monounsaturated FA, and total cis unsaturated FA increased linearly. Transfer efficiency of total C18 decreased linearly when barley was replaced by hulled oats in Exp1. In Exp2, relative proportions of 14:0, 16:0, and total SFA were lower, whereas proportions of 18:0, 18:1, monounsaturated FA, and cis unsaturated FA were higher in milk from cows fed the oat diets than in milk from cows fed the barley diet. Moreover, in Exp2, gradual replacement of hulled oats with dehulled oats slightly decreased the relative proportion of 14:0 in milk fat but did not affect the proportions of 16:0, 18:0, 18:1, total SFA, monounsaturated FA, trans FA, or polyunsaturated FA. In Exp2, transfer efficiency of total C18 was lower when cows were fed the oat diets than when fed the barley diet and decreased linearly when hulled oats were replaced with dehulled oats. Predictions of daily CH4 emissions (g/d) using the on-farm available variables energy-corrected milk yield and body weight were not markedly improved by including milk concentrations of individual milk FA in prediction equations. In conclusion, replacement of barley with oats as a concentrate supplement for dairy cows fed a grass silage-based diet could offer a practical strategy to change the FA composition of milk to be more in accordance with international dietary guidelines regarding consumption of SFA.  相似文献   

19.
The objective of this study was to investigate the effect of monensin (MN) and dietary soybean oil (SBO) on milk fat percentage and milk fatty acid (FA) profile. The study was conducted as a randomized complete block design with a 2 × 3 factorial treatment arrangement using 72 lactating multiparous Holstein dairy cows (138 ± 24 d in milk). Treatments were [dry matter (DM) basis] as follows: 1) control total mixed ration (TMR, no MN) with no supplemental SBO; 2) MN-treated TMR (22 g of MN/kg of DM) with no supplemental SBO; 3) control TMR including 1.7% SBO; 4) MN-treated TMR including 1.7% SBO; 5) control TMR including 3.4% SBO; and 6) MN-treated TMR including 3.4% SBO. The TMR (% of DM; corn silage, 31.6%; haylage, 21.2%; hay, 4.2%; high-moisture corn, 18.8%; soy hulls, 3.3%; and protein supplement, 20.9%) was offered ad libitum. The experiment consisted of a 2-wk baseline, a 3-wk adaptation, and a 2-wk collection period. Monensin, SBO, and their interaction linearly reduced milk fat percentage. Cows receiving SBO with no added MN (treatments 3 and 5) had 4.5 and 14.2% decreases in milk fat percentage, respectively. Cows receiving SBO with added MN (treatments 4 and 6) had 16.5 and 35.1% decreases in milk fat percentage, respectively. However, the interaction effect of MN and SBO on fat yield was not significant. Monensin reduced milk fat yield by 6.6%. Soybean oil linearly reduced milk fat yield and protein percentage and linearly increased milk yield and milk protein yield. Monensin and SBO reduced 4% fat-corrected milk and had no effect on DM intake. Monensin interacted with SBO to linearly increase milk fat concentration (g/100 g of FA) of total trans-18:1 in milk fat including trans-6 to 8, trans-9, trans-10, trans-11, trans-12 18:1 and the concentration of total conjugated linoleic acid isomers including cis-9, trans-11 18:2; trans-9, cis-11 18:2; and trans-10, cis-12 18:2. Also, the interaction increased milk concentration of polyunsaturated fatty acids. Monensin and SBO linearly reduced, with no significant interaction, milk concentration (g/100 g of FA) of short- and medium-chain fatty acids (<C16). Soybean oil reduced total saturated FA and increased total monounsaturated FA. These results suggest that monensin reduces milk fat percentage and this effect is accentuated when SBO is added to the ration.  相似文献   

20.
Trans fatty acids (FA) arise in ruminant-derived foods as a consequence of rumen biohydrogenation and are of interest because of their biological effects and potential role in chronic human diseases. Our objective was to compare 2 trans FA, elaidic acid (EA; trans-9 18:1) and vaccenic acid (VA; trans-11 18:1), with oleic acid (OA; cis-9 18:1) relative to plasma lipid transport and mammary utilization for milk fat synthesis. Three ruminally cannulated, Holstein dairy cows, 259 ± 6 DIM (mean ± SEM), were randomly assigned in a 3 × 3 Latin square design. Treatments were a 4-d abomasal infusion of 1) OA (45.5 g/d), 2) EA (41.7 g/d), and 3) VA (41.4 g/d). Milk samples were collected at each milking and blood samples were collected at the start and end of each treatment period. The proportions of total plasma FA associated with each plasma lipid fraction at baseline (pretreatment) were 62.6 ± 0.6% phospholipids, 26.1 ± 0.6% cholesterol esters, 9.8 ± 0.4% triglycerides, and 1.5 ± 0.1% nonesterified fatty acids; these values were unaffected by treatment. There were striking differences in the FA composition of the individual plasma lipid fractions and in the distribution of specific 18-carbon FA among the lipid fractions. Infusion of treatment isomers caused their specific increase in the various plasma lipid fractions but had no effect on milk production variables, including milk fat yield and content. Transfer efficiency of infused OA, EA, and VA to milk fat averaged 65.5 ± 3.0%, 59.7 ± 1.5%, and 54.3 ± 0.6%, respectively. For the VA infusion, 24.6 ± 1.1% of the transfer was accounted for by the increased yield of cis-9, trans-11 conjugated linoleic acid in milk fat, consistent with its endogenous synthesis from VA via the mammary enzyme Δ9-desaturase. Notably, linoleic acid (18:2n-6) and linolenic acid (18:3n-3) accounted for 47.7% of total plasma FA, but only 2.6% of FA in milk. Overall, results demonstrate clear differences in plasma transport and mammary uptake and utilization of 18-carbon FA, and these relate to the location, orientation, and number of double bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号