首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of fat and calcium sulfate to diets fed to ruminants has resulted in a reduction in methane production, but the effects on energy balance have not been studied. A study using indirect calorimetry and 16 multiparous (8 Holstein and 8 Jersey; 78 ± 15 d in milk; mean ± standard deviation) lactating dairy cows was conducted to determine how mitigating methane production by adding corn oil or calcium sulfate to diets containing reduced-fat distillers grains affects energy and nitrogen balance. A replicated 4 × 4 Latin square design with 35-d periods (28 d of adaption and 4 d of collections) was used to compare 4 different dietary treatments. Treatments were composed of a control (CON) diet, which did not contain reduced-fat distillers grain and solubles (DDGS), and treatment diets containing 20% (dry matter basis) DDGS (DG), 20% DDGS with 1.38% (dry matter basis) added corn oil (CO), and 20% DDGS with 0.93% (dry matter basis) added calcium sulfate (CaS). Compared with CON, dry matter intake was not affected by treatment, averaging 29.6 ± 0.67 kg/d. Milk production was increased for diets containing DDGS compared with CON (26.3 vs. 27.8 ± 0.47 kg/d for CON vs. DDGS, respectively), likely supported by increased energy intake. Compared with CON, energy-corrected milk was greater in DG and CO (30.1 vs. 31.4, 31.7, and 31.0 ± 0.67 kg/d for CON, DG, CO, and CaS, respectively). Compared with CON, the addition of calcium sulfate and corn oil to diets containing DDGS reduced methane production per kg of dry matter intake (22.3, 19.9, and 19.6 ± 0.75 L/kg per d for CON, CO, and CaS, respectively). Similarly, methane production per kilogram of energy-corrected milk was reduced with the addition of calcium sulfate and corn oil to diets containing DDGS (14.2, 12.5, and 12.4 ± 0.50 L/kg per d for CON, CO, and CaS, respectively). Compared with CON and CaS, the intake of digestible energy was greater for DG and CO treatments (57.7, 62.1, 62.0, and 59.0 ± 1.38 Mcal/d for CON, DG, CO, and CaS, respectively). Intake of metabolizable energy was greater in all treatments containing DDGS compared with CON (50.5 vs. 54.0 ± 1.08 Mcal/d for CON vs. DDGS, respectively). Net balance (milk plus tissue energy) per unit of dry matter was greater in CO (containing DDGS and oil) than CON (1.55 vs. 1.35 ± 0.06 Mcal/kg for CO vs. CON, respectively). Tissue energy was greater in DG and CO compared with CON (6.08, 7.04, and 3.16 ± 0.99 Mcal/d for DG, CO, and CON, respectively. Results of this study suggest that the addition of oil and calcium sulfate to diets containing DDGS may be a viable option to reduce methane production and in the case of oil also improve net energy balance in lactating dairy cows.  相似文献   

2.
The objective of this study was to investigate the effects of dietary energy levels and rumen-protected lysine supplementation on serum free fatty acid levels, β-hydroxybutyrate levels, dry matter (DM) intake, and milk production and composition. Treatments were arranged in a 2 × 2 factorial design with 2 dietary energy levels [high net energy for lactation (NEL) = 1.53 Mcal/kg of DM vs. low NEL = 1.37 Mcal/kg of DM; HE vs. LE) fed either with rumen-protected lysine (bypass lysine; 40 g/cow per day) or without rumen-protected lysine (control). Sixty-eight third-lactation Holstein dairy cows entering their fourth lactation were randomly allocated to 4 treatments groups: HE with bypass lysine, HE without bypass lysine, LE with bypass lysine, and LE without bypass lysine. Groups were balanced based upon their expected calving date, previous milk yields, and body condition score. All cows were fed the same diet (NEL = 1.34 Mcal/kg of DM) during the dry period prior to the trial. Rumen-protected lysine was top-dressed on a total mixed ration to deliver 9.68 g/d of metabolizable lysine to pre- and postpartum cows. After calving, all cows received the same TMR (1.69 Mcal/kg of DM). Blood samples were collected at ?21, ?14, ?7, 0, 3, 7, 14, and 21 d relative to calving, and free fatty acids and β-hydroxybutyrate concentrations were measured. Amount of feed offered and orts were collected and measured for individual cows 4 d/wk. Milk samples were collected once per week following calving, and milk composition was analyzed. Feeding high NEL to close-up cows decreased the concentrations of free fatty acid and β-hydroxybutyrate in prepartum cows but not in postpartum cows. Addition of rumen-protected lysine increased postpartum DM intake, and decreased serum free fatty acid and β-hydroxybutyrate concentrations. Neither energy nor rumen-protected lysine supplementation nor their interaction affected milk yield or fat or lactose yields. However, cows in the group receiving HE with bypass lysine tended to produce more milk compared with other groups and had a lower blood β-hydroxybutyrate concentration postpartum. These results indicate that feeding a high-energy diet together with rumen-protected lysine improved DM intake and lowered serum free fatty acid and β-hydroxybutyrate concentrations in transition cows.  相似文献   

3.
Equations that predict daily dry matter intake (DMI) of a lactating cow could be evaluated by comparing the predicted accumulation of energy in body weight (BW) over the course of lactation with the observed BW evolution. However, to do so requires that first the energy balance calculations from observed DMI are evaluated. The purpose of the work reported here was to determine the degree of deviation of predicted from observed BW, according to net energy for lactation (NEL) balance calculated from weekly observations of DMI, BW, and fat-corrected milk production in 21 sets of full-lactation data, and to determine an appropriate correction of the NEL bias for subsequent DMI prediction evaluations. When the National Research Council maintenance equation 0.08 × BW(kg)0.75 was used in energy balance calculation, BW was overpredicted with an increasing difference between the cumulative predicted BW and observed BW as lactation progressed. Placing all the error of BW prediction into maintenance energy expenditures resulted in a best-fit equation of 0.096 ± 0.003 Mcal/kg of BW0.75. A time-dependent equation was also developed, in which weekly maintenance expenditures were determined as the NEL expenditure to yield a zero NEL balance and could be described by a second-order polynomial equation related to week of lactation (WOL) where maintenance NEL = [−0.0227(± 0.0098) × WOL2 + 1.352(± 0.456) × WOL + 78.09(± 4.92) Mcal/kg of BW0.75] × 10−3. Average maintenance energy expenditure at the onset of lactation was approximately 0.08 Mcal/kg of BW0.75, and this value increased to a plateau at wk 15 of lactation of approximately 0.098 Mcal/kg of BW0.75. Standard deviations between data sets of weekly maintenance parameter estimates throughout lactation were large but consistent at approximately 25% of the mean. Revision of the maintenance energy expenditure estimate substantially improved BW prediction by the energy balance model. On average, the 0.096 Mcal of NEL/kg of BW0.75 equation resulted in the best BW predictions, although substantial variation existed around this value.  相似文献   

4.
The Virginia Tech crossbreeding project began in the fall of 2002 by mating Holstein (H) and Jersey (J) foundation females to Holstein and Jersey bulls to create HH, HJ, JH, and JJ genetic groups, where the sire breed is listed first followed by dam breed. Collection of individual daily feed intakes began in September 2005 and continued through November 2008, resulting in observations on 43, 34, 41, and 22 HH, HJ, JH, and JJ cows, respectively. Intakes were measured for 2 wk out of every 6-wk period for first-lactation cows less than 310 d in milk. The ration was analyzed for dry matter and nutrient content, which was used to calculate net energy of lactation (NEL, Mcal/kg). Body and milk weights were collected daily with milk components measured monthly. The NEL requirements for maintenance, growth (in the form of retained energy), pregnancy, and production were calculated using National Research Council (2001) equations. Random regression models were used to predict consumed NEL and NEL required for production, maintenance, and body weight at every week in lactation. Energy required for growth was calculated for each cow at each stage of lactation using five 2-mo stages. Energy balance was estimated by subtracting the predicted energy required for production, maintenance, growth, and pregnancy from the predicted NEL consumed. A linear model with fixed effects of genetic group, year-season of calving group, and a linear and quadratic effect of age at calving was used to analyze the energy terms. The HJ and JH groups were not different in any of the analyses for energy terms. The HH cows consumed more energy than did HJ and JJ cows. There were no genetic group differences for total energy for pregnancy. The HH, HJ, and JH groups were not different from each other for energy required for production but required more energy for production than the JJ. The JH allocated a lower percentage of their energy intake to maintenance than the HH (25.7 to 27.4%) and the JJ allocated less energy to growth than the HH and HJ. Genetic group explained significant variation for percentage of energy partitioned to production with the JJ allocating more energy to production than the HH (66.3 vs. 60.9%). Genetic group differences in characterization of energy balance warrant further study.  相似文献   

5.
《Journal of dairy science》2019,102(9):8234-8246
The objective of the current study was to explore differences in dry matter intake, intake capacity, production efficiency, energy balance, and grazing behavior, of 2 divergent genetic groups (GG) of lactating Holstein-Friesian, selected using the Irish Economic Breeding Index (EBI). The GG were evaluated across 3 spring calving pasture-based feeding treatments (FT) over 3 yr. The 2 divergent GG were (1) high EBI, representative of the top 5% nationally (elite), and (2) EBI representative of the national average (NA). In each year 90 elite and 45 NA cows were randomly allocated to 1 of 3 FT: control, lower grass allowance, and high concentrate. Although FT did affect animal performance, there were few notable incidences of GG × FT interaction. The elite cows expressed lower daily milk yield (−1 kg) compared with NA. Elite cows did, however, express higher daily concentrations of milk fat (+3.7 g/kg) and protein (+2.1 g/kg) compared with NA. Daily yield of milk solids and net energy of lactation (NEL) was similar for both GG. Body weight (BW) was greater for NA (+13 kg) compared with elite, whereas mean body condition score was greater (+0.14) for elite compared with NA. Intake did not differ significantly between GG. Intake capacity, expressed as total dry matter intake/100 kg of BW, was greater with elite compared with NA. Production efficiency expressed as yield of milk solids per 100 kg of BW was greater with elite compared with NA, although milk solids/total dry matter intake did not differ between GG. Expressed as NEL as a proportion of net energy intake minus net energy of maintenance (NEL/NEI – NEM) and NEI/milk solids kg, indicated a slight reduction in the utilization of ingested energy for milk production with elite compared with NA. This is, however, suggested as favorable as it manifested as a more positive energy balance with elite compared with NA and so is likely to enhance robustness, increase longevity, and increase overall lifetime efficiency. Noteworthy was a consistent numerical trend toward more intense grazing activity with elite compared with NA cows, exhibited in the numerically greater grazing time (+19 min) and total number of bites per day (+2,591).  相似文献   

6.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

7.
The objectives of this study were to evaluate 2 feeding strategies for early lactation cows on performance and efficiency of nutrient utilization. Fifty-eight Holsteins cows were blocked by parity and production during the pretreatment period and then randomly assigned at 21 d postpartum to a control diet [n = 29; 16.2% crude protein, 1.64 Mcal of net energy for lactation (NEL), 22% starch, and 19% forage neutral detergent fiber (NDF)] or a diet with caloric density manipulated weekly (precision diet; n = 29; 16.2% crude protein; 1.59 to 1.68 NEL; 18 to 26% starch; and 16 to 22% forage NDF) to promote a calculated positive energy balance of 5 Mcal/day. Diets were fed as total mixed rations and precision cows had their diets adjusted individually once a week, by feeding additional grain supplementation from 0 to 25% of daily dry matter (DM) offered, according to the energy balance of the preceding week. Energy balance was calculated daily and then averaged weekly. The study lasted from wk 3 to 19 postpartum, and nutrient digestibility, rumen fluid composition, urinary output, estimates of microbial protein synthesis, and feeding behavior were evaluated between wk 9 and 13 postpartum. Compared with controls, precision cows had similar DM intake (24.3 kg/d), but NEL intake tended to be greater primarily between wk 4 and 8 postpartum. Yields of milk (45.2 vs. 41.9 kg/d), milk components, 3.5% fat-corrected milk (44.0 vs. 40.8 kg/d), and energy-corrected milk (43.4 vs. 40.2) were all greater for precision than control cows, resulting in greater energy-corrected milk production per kilogram of diet DM consumed (1.79 vs. 1.72). Precision cows produced more milk calories per kilogram of metabolic weight (0.227 vs. 0.213 Mcal of NEL/kg), although the amount of consumed calories partitioned into milk (82.3%) and measures of energy status did not differ between treatments throughout the study. Glucose concentrations were greater throughout the day in precision cows compared with controls at 6 wk, but not 13 wk postpartum. Apparent digestibility of nutrients, composition of rumen fluid, mean and low rumen pH, and estimated rumen microbial N synthesis remained mostly unaltered by treatments. Although precision cows produced more milk true protein, measures of efficiency of dietary N use were not influenced by treatment. On wk 13 postpartum, precision cows consumed a diet with longer NDF particles, which resulted in a tendency for greater intake of NDF >8 mm because of less sorting against the long particles than control cows. Meal pattern differed with treatment, and precision cows consumed feed more sparsely throughout the day, spent more time ruminating lying, and had similar meal duration (mean of 36.3 min/meal) compared with control cows, but smaller meal size (3.33 vs. 3.64 kg/meal). Results from the current study indicate that allocating dietary resources according to the individual needs of cows based on energy balance improves lactation performance compared with feeding a single total mixed ration, despite similar average nutrient intake between treatments. Improvements in performance are likely related to allocation of calories based on the needs of the cow and on shifts of feeding behavior that might favor intake of smaller meals.  相似文献   

8.
Effects of dietary energy density during late gestation and early lactation on metabolic status of periparturient cows were studied. Four weeks before expected calving, animals were fed a low (DL; 1.58 Mcal of NEL/kg) or high energy density diet (DH; 1.70 Mcal of NEL/kg). After calving, half of the cows from each prepartum treatment were assigned to a low (L; 1.57 Mcal of NEL/kg) or high energy density diet (H; 1.63 Mcal of NEL/kg) until d 20 postpartum. After d 20, all animals were fed H until d 70. Animals fed DH had a more positive energy balance during the prepartum period. Animals fed DH had higher plasma concentrations of glucose and insulin and lower concentrations of plasma nonesterified fatty acid (NEFA) on d −7 relative to calving compared with animals fed DL. No differences in blood concentrations of metabolites, insulin and liver triglycerides (TG) content were observed on d 1. Liver TG content at d 1 and 21 were more related to magnitude of change in energy intake prepartum than to energy intake in the last week of gestation. Cows fed H had higher concentrations of plasma glucose and insulin, but similar plasma NEFA during the postpartum period compared with cows fed L. Plasma concentrations of β-hydroxybutyrate (BHBA) and liver TG content on d 21 were 46 and 30% lower, respectively, for cows fed H compared with cows fed L. Interactions between prepartum and postpartum treatments indicated that negative effects of delaying higher concentrate feeding until d 21 postpartum can be partially offset by increasing concentrate in the diet before calving. Cows fed L had a higher increase in white line hemorrhage scores between prepartum and 10 wk postpartum compared with cows fed H. Energy density of prepartum diets had a minor influence on metabolic status of cows postpartum. A more favorable metabolic profile occurs when increasing the concentrate content of the diet immediately postpartum compared with delaying the increase until d 21 postpartum.  相似文献   

9.
《Journal of dairy science》2022,105(12):9581-9596
Dairy cow responses to dietary crude protein (CP) may depend on stage of lactation. The primary objective of this study was to evaluate the effects of 4 concentrations of dietary CP on dry matter intake (DMI), production performance, net energy for lactation (NEL) output in milk, feed efficiency (FE: milk NEL/DMI), and nitrogen use efficiency (100 × milk protein-N/N intake) when fed to cows grouped as early, mid-early, mid-late, and late lactation. Our secondary objective was to determine the range of CP concentration at which production responses were not negatively affected across days in milk (DIM). Multiparous Holstein cows (n = 64) were stratified by DIM [initial average ± standard deviation: 86 ± 14.9 (early), 119 ± 10.0 (mid-early), 167 ± 22.2 (mid-late), and 239 ± 11.1 (late)] and then randomly assigned within DIM group to receive 1 of 4 total mixed rations containing 13.6, 15.2, 16.7, and 18.3% CP (dry matter basis) according to a 4 × 4 factorial arrangement of treatments. Cows were individually fed a covariate diet for 14 d, followed by 56 d of treatment diets. Milk yield and DMI were recorded daily and milk components were analyzed weekly for 2 consecutive days at 3 daily milkings. Data were analyzed using a categorical mixed-effect model to evaluate the effects of CP concentration and DIM using linear, quadratic, and cubic contrasts, and their interactions. Additionally, a mixed-effect cubic regression model was fit with DIM, dietary CP concentration, and their interaction as continuous independent variables. Dietary CP concentration deemed optimal across DIM was determined as the range of CP for which the dependent responses did not differ from the predicted maximum. With advancing stage of lactation, DMI, milk NEL output, and FE decreased linearly (from 30.4 to 28.4 kg/d for DMI, from 33.2 to 23.3 Mcal/d for NEL output, and from 1.09 to 0.82 Mcal milk NEL/kg DMI for FE for early and late lactation cows, respectively). Responses to dietary CP concentration were linear, quadratic, and cubic with the greatest values observed when cows were fed the 16.7% CP diet across DIM (30.8 kg/d, 31.0 Mcal/d, and 1.01 Mcal/kg for DMI, milk NEL output, and FE, respectively). There was an interaction between dietary CP concentration and stage of lactation for DMI, milk NEL output, milk component yield, and FE, which was due to the decline in response to additional CP as lactation progressed. Compared with the 16.7% CP diet, feeding the 18.3% CP diet decreased milk NEL 0.81 and 5.3 Mcal/d for early and late lactation cows, respectively, indicating that feeding a higher CP concentration in late lactation had a negative effect on cow performance. Nitrogen use efficiency declined linearly with increasing CP concentration and DIM. Regression analysis suggested that dietary CP ranging from 16.3 to 17.4% maintained production in early and mid-early lactation. However, dietary CP could be reduced to between 15.7 and 17.1% in late lactation. This research suggested that there are distinct ranges of dietary CP concentrations that maintain cow performance at each stage of lactation.  相似文献   

10.
Hydrolyzed feather meal (HFM) is a feed that is high in rumen undegradable protein; however, it is low in Lys compared with other high rumen undegradable protein sources. Additionally, processing methods differ by facility, which affects AA composition and protein digestibility. The objective of this study was to use lactating dairy cows to determine the effects of feeding 2 sources of HFM that differed by the amount of blood they contained and also to study the effects of supplementing rumen-protected (RP) Lys when these sources of HFM are fed. In this study, 12 multiparous Jersey cows were enrolled in a triplicated 4 × 4 Latin square with 4 periods 28 d in length. Cows were fed 2 total mixed rations that differed by source of HFM. The HFM was included at 4.5% of the diet dry matter, and one source was produced with the addition of poultry blood. Cows were randomly assigned to 1 of 4 treatment sequences. Treatments were as follows: HFM without added blood and no RP-Lys, HFM with added blood and no RP-Lys, HFM without blood and with RP-Lys (22 g of digestible Lys), and HFM with added blood and RP-Lys. The source of HFM containing blood tended to increase dry matter intake (18.3 vs. 17.3 ± 0.72 kg/d), and increased milk yield (20.5 vs. 18.4 ± 1.31 kg/d) and protein yield (0.788 vs. 0.694 ± 0.040 kg/d). The inclusion of RP-Lys did not affect milk or protein yield. In cows fed HFM containing blood, plasma concentration of Lys (82.1 vs. 70.8 ± 4.06 μM) and His (27.8 vs. 17.9 ± 3.15 μM) was higher. The addition of RP-Lys had no effect on the concentration of either plasma Lys or His. Gross energy intake tended to increase for HFM containing more blood (81.4 vs. 77.3 ± 3.29 Mcal/d); however, no difference was observed for intake of digestible energy (52.0 ± 2.20 Mcal/d) or metabolizable energy (46.4 ± 2.02 Mcal/d). Similar to dry matter intake, N intake increased with the inclusion of HFM containing blood, but crude protein digestibility decreased (61.6 vs. 66.0%). Results of this study highlight that source of HFM can be a factor that affects milk production and that this in part is due to differences in the profile of AA. Additionally, the observation that plasma His and milk protein increased with the consumption of HFM containing more blood suggests that His may have played a role in increasing milk and milk protein yield.  相似文献   

11.
Methane (CH4) production of ruminants typically increases with increased dry matter intake (DMI). However, few studies have observed the effects of feeding multiple times a day and its effects on diurnal variation in CH4 production and energy balance in late-lactation dairy cattle. A study using headbox-style indirect calorimetry and 12 multiparous (225 ± 16.2 d in milk; mean ± SD) lactating Jersey cows was conducted to determine the effects of feeding twice daily on diurnal variation in CH4 production and total energy balance. A crossover design with 14-d periods (10 d of adaption and 4 d of collection) was used to compare 2 treatments. Treatments consisted of either once a day feeding (1×; 100% of feed given at 1000 h) or twice a day feeding (2×; 50% of feed given at 1000 h and the final 50% at 2000 h) with a common diet fed in both treatments. Dry matter intake was not different between treatments, with a mean of 16.9 ± 0.88 kg/d. Once a day feeding tended to have greater milk yield compared with twice a day feeding (21.2 vs. 20.4 ± 1.59 kg/d, respectively). Milk fat and milk protein percentage were not different, with means of 6.18 ± 0.20% and 3.98 ± 0.08%, respectively. Total CH4 production did not differ between treatments, with a mean of 402.1 ± 20.8 L/d. Similarly, CH4 per unit of milk yield and DMI was not different between treatments, with means of 20.5 ± 1.81 and 23.8 ± 1.21 L/kg, respectively. Feeding frequency did not affect diurnal variation of hourly CH4 production, with a mean of 17.1 ± 0.74 L/h. A trend was observed for a treatment × hour interaction. Methane production per hour increased after the second feeding for cattle fed twice versus once daily. Gross energy, digestible energy, metabolizable energy, and balance (milk plus tissue) per kilogram of DMI did not differ by feeding frequency, with means of 4.41 ± 0.01, 3.05 ± 0.03, 2.63 ± 0.03, and 1.32 ± 0.08 Mcal/kg of DM, respectively. Metabolizable energy for maintenance was 146 kcal/kg of metabolic body weight, with an efficiency of converting metabolizable energy to net energy balance (milk plus tissue) of 76%. Nitrogen balance did not differ among treatments, with a mean balance of 17.3 ± 13.0 g/d. Therefore, total CH4 production and energy maintenance were not affected by feeding frequency. However, CH4 was variable throughout the day, and caution should be exercised when collecting CH4 samples at a limited number of time points because this may under- or overestimate total production.  相似文献   

12.
《Journal of dairy science》2021,104(11):11553-11566
The first studies concerning nutrient requirements for preweaned dairy calves were from the 1920s and 1930s; however, few studies were published in the following decades. We aimed to determine energy and protein requirements of preweaning Holstein and Holstein × Gyr dairy calves in a multistudy meta-regression. We used a database composed of individual measurements of 166 preweaned male calves (138 submitted to treatments and 28 used as the reference group) from 4 studies that used the methodology of comparative slaughter. Animals with less than 15/16 of Holstein genetic composition were considered crossbred Holstein × Gyr, whereas other animals were considered Holstein. Net energy requirements for maintenance (NEM) were determined by the regression between heat production and metabolizable energy intake (MEI). The metabolizable energy requirements for maintenance were calculated by the iterative method, and the efficiency of use of metabolizable energy for maintenance was obtained by NEM divided by the metabolizable energy requirements for maintenance. Net energy requirements for gain (NEG) were estimated using a regression of the retained energy (RE) as a function of empty body weight (EBW) and empty body gain (EBG). The efficiency of use of metabolizable energy for gain was estimated by the regression of RE as a function of MEI, but with partitioning the MEI into MEI from liquid feed and MEI from starter feed. Additionally, the effect of a liquid feed (milk or milk replacer) was tested on the slope of the regression. The metabolizable protein requirements for maintenance (MPM) were estimated using the intercept of the regression between the metabolizable protein intake (MPI) and average daily gain. The MPM was determined as the ratio between the intercept and the metabolic body weight. Net protein requirements for gain (NPG) were estimated by the regression between retained protein, EBG, and RE. The efficiency of use of metabolizable protein for gain was estimated by the regression of the retained protein as a function of MPI, but with partitioning the MPI into MPI from liquid feed and MPI from starter feed. Additionally, the effect of a liquid feed (milk or milk replacer) was tested on the regression slope. Breed did not influence any of the nutrient requirements' estimates. The NEM was estimated as 70.2 kcal/metabolic body weight per day. The efficiency of use of metabolizable energy for maintenance observed was 66%. The NEG was estimated by the equation NEG = 0.0901 × EBW0.75 × EBG0.9539. The efficiency of use of metabolizable energy for gain was estimated as 57.6, 49.3, and 41.2% for milk, milk replacer, and starter feed, respectively. The MPM was estimated as 4.22 g/EBW0.75 per day, and the NPG was determined by the equation: NPG = 30.06 × EBG + 70.98 × RE. The efficiency of use of metabolizable protein for gain was estimated as 71.9, 59.2, and 44.4% for milk, milk replacer, and starter feed, respectively. We concluded that no differences were observed in energy and protein requirements between Holstein and Holstein × Gyr crossbred cows. The efficiencies of use of metabolizable energy and protein are greater for milk when compared with milk replacer and starter feed. Therefore, we propose that the equations generated herein should be used to estimate energy and protein requirements of preweaned Holstein and Holstein × Gyr crossbred dairy calves raised under tropical conditions.  相似文献   

13.
An experiment was conducted to determine the effect of prepartum plane of energy intake on metabolic profiles related to lipid metabolism and health in blood and liver. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A high energy diet [1.62 Mcal of net energy for lactation (NEL)/kg; 15% crude protein] was fed for either ad libitum intake or restricted intake to supply 150% (OVR) or 80% (RES) of energy requirements for dry cows in late gestation. To limit energy intake to 100% of National Research Council requirements at ad libitum intake, chopped wheat straw was included as 31.8% of dry matter for a control diet (CON; 1.21 Mcal of NEL/kg of dry matter; 14.2% crude protein). Regardless of parity group, OVR cows had greater concentrations of glucose, insulin, and leptin in blood prepartum compared with either CON or RES cows; however, dietary effects did not carry over to the postpartum period. Prepartum nonesterified fatty acids (NEFA) were lower in OVR cows compared with either CON or RES cows. Postpartum, however, OVR cows had evidence of greater mobilization of triacylglycerol (TAG) from adipose tissue as NEFA were higher than in CON or RES cows, especially within the first 10 d postpartum. Prepartum β-hydroxybutyrate (BHBA) was not affected by diet before parturition; however, within the first 10 d postpartum, OVR cows had greater BHBA than CON or RES cows. Prepartum diet did not affect liver composition prepartum; however, OVR cows had greater total lipid and TAG concentrations and lower glycogen postpartum than CON or RES cows. Frequency of ketosis and displaced abomasum was greater for OVR cows compared with CON or RES cows postpartum. Controlling or restricting prepartum energy intake yielded metabolic results that were strikingly similar both prepartum and postpartum, independent of parity group. The use of a bulky diet controlled prepartum energy intake in multiparous and primiparous cows, improved metabolic status postpartum, and reduced the incidence of health problems. When metabolic profiles are considered collectively, cows overfed energy prepartum exhibited an “overnutrition syndrome” with characteristics of clinical symptoms displayed by diabetic or obese nonruminant subjects. This syndrome likely contributed to metabolic dysfunction postpartum.  相似文献   

14.
The objective of this study was to estimate the energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. Twenty-four 10-mo-old bulls [initial body weight (BW) = 184 ± 23.4 kg] were used in a comparative slaughter trial. Six bulls were slaughtered at the beginning of the experiment as the reference group, to estimate initial empty body weight (EBW) and energy and protein contents of the remaining animals. The remaining bulls were assigned to a completely randomized design with 3 levels of dry matter intake and 6 replicates. The levels of dry matter intake were 1.2% of BW, 1.8% of BW, and ad libitum to target orts equal to 5% of the total amount that was fed. The remaining bulls were slaughtered at the end of the experiment. The bulls were fed a diet consisting of 59.6% corn silage and 40.4% concentrate on a dry matter basis. The equation that determined the relationship between EBW and BW was EBW = (0.861 ± 0.0031) × BW. The relationship between empty body gain (EBG) and average daily gain (ADG) was demonstrated by the following equation: EBG = (0.934 ± 0.0111) × ADG. Net energy for maintenance (NEM) was 74.8 ± 2.89 kcal/kg of EBW0.75 per day, and metabolizable energy for maintenance (MEM) was 120.8 kcal/kg of EBW0.75 per day. The detected efficiency of use of metabolizable energy for maintenance (km) was 61.9%. The equation used to estimate net energy for gain (NEG) was as follows: NEG = (0.049 ± 0.0011) × EBW0.75 × EBG0.729 ± 0.0532. The efficiency of use of metabolizable energy for gain (kg) was 35.7%. The metabolizable protein for maintenance (MPM) was 3.05 g/kg of BW0.75. The equation used to estimate net protein requirements for gain (NPG) = (87.138 ± 65.1378 × EBG) + [(40.436 ± 21.3640) × NEG]. The efficiency of use of metabolizable protein for gain (k) was 35.7%. We concluded that the estimates of energy and protein requirements presented herein are more appropriate than the National Research Council dairy cattle model and the Brazilian BR-CORTE system to balance the diets of crossbred (Holstein × Gyr) growing bulls.  相似文献   

15.
Previous research in our laboratory showed that dietary fat supplementation during the dry period was associated with decreased peripartum hepatic lipid accumulation. However, fat supplementation decreased dry matter (DM) intake and thereby confounded results. Consequently, 47 Holstein cows with body condition scores (BCS) ≤ 3.5 at dry-off were used to determine whether source or amount of energy fed to dry cows was responsible for the decreased hepatic lipid content. Moderate grain- or fat-supplemented diets [1.50 Mcal of net energy for lactation (NEL)/kg] were fed from dry-off (60 d before expected parturition) to calving at either ad libitum (160% of NEL requirement) or restricted (80% of NEL requirement) intakes. Postpartum, cows were fed a single lactation diet for ad libitum intake and performance was measured for 105 d. Prepartum intakes of DM and NEL were significantly lower for feed-restricted cows as designed. During the first 21 d postpartum, previously restricted cows had higher intakes of DM and NEL. Body weights and BCS were lower prepartum for restricted cows but groups converged to similar nadirs postpartum. Restricted-fed cows had lower concentrations of glucose and insulin and increased concentrations of NEFA in plasma during the dry period. Peripartum NEFA rose markedly for all treatments but were higher postpartum for cows previously fed ad libitum. Plasma concentrations of NEFA and BHBA remained lower in cows restricted-during the dry period. Postpartum concentrations of total lipid and triglyceride in liver were lower in cows previously feed-restricted. Across dietary treatments, activity of carnitine palmitoyltransferase (CPT) in hepatic mitochondria was lowest at − 21 d, highest at 1 d, and decreased at 21 and 65 d relative to parturition. The activity of CPT at d 1 tended to be higher for previously feed-restricted cows; thereafter, CPT activity declined more rapidly than in cows fed ad libitum. Nutrient intake during the dry period had more pronounced effects on peripartal lipid metabolism and DMI than did composition of the prepartum diet.  相似文献   

16.
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d −2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d −18, −9, −5, and −2. Plasma tumor necrosis factor-α concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.  相似文献   

17.
The data set used in the present study was obtained from 20 energy metabolism studies involving 579 lactating dairy cows (511 Holstein-Friesian, 36 Norwegian Red, and 32 Jersey-Holstein crossbreds) varying in genetic merit, lactation number, stage of lactation, and live weight. These cows were offered diets based on grass silage (n = 550) or fresh grass (n = 29), and their energy intake and outputs, including methane energy (CH4-E), were measured in indirect open-circuit respiration calorimeter chambers. The objective was to use these data to evaluate relationships between CH4-E output and a range of factors in animal production and energetic efficiency in lactating dairy cows under normal feeding regimens. The CH4-E as a proportion of milk energy output (El), El adjusted to zero energy balance (El(0)), or intakes of gross energy (GE), digestible energy (DE), or metabolizable energy (ME) was significantly related to a wide range of variables associated with milk production (El and El(0)) and energy parameters (energy intake, metabolizability, partitioning, and utilization efficiencies). Three sets of linear relationships were developed with experimental effects removed. The CH4-E/GE intake (r2 = 0.50-0.62) and CH4-E/El (r2 = 0.41-0.68) were reduced with increasing feeding level, El/metabolic body weight (MBW; kg0.75), El(0)/MBW, GE intake/MBW, DE intake/MBW, and ME intake/MBW. Increasing dietary ME/DE decreased CH4-E/El (r2 = 0.46) and CH4-E/GE intake (r2 = 0.72). Dietary ME concentration and ME/GE were also negatively related to CH4-E/GE intake (r2 = 0.47). However, increasing heat production/ME intake increased CH4-E as a proportion of El (r2 = 0.41), El(0) (r2 = 0.67) and energy intake (GE, DE, and ME; r2 = 0.62 and 0.70). These proportional CH4-E variables were reduced with increasing ratios of El/ME intake and El(0)/ME intake and efficiency of ME use for lactation (r2 = 0.49-0.70). Fitting CH4-E/El or CH4-E/El(0) against these energetic efficiencies in quadratic rather than linear relationships significantly increased r2 values (0.49-0.67 vs. 0.59-0.87). In conclusion, CH4-E as a proportion of energy intake (GE, DE, and ME) and milk production (El and El(0)) can be reduced by increasing milk yield and energetic efficiency of milk production or by reducing energy expenditure for maintenance. The selection of dairy cows with high energy utilization efficiencies and milk productivity offers an effective approach to reducing enteric CH4 emission rates.  相似文献   

18.
Measurement of urinary energy (UE) excretion is essential to determine metabolizable energy (ME) supply. Our objectives were to evaluate the accuracy of using urinary N (UN) or C (UC) to estimate UE and ultimately improve the accuracy of estimating ME. Individual animal data (n = 433) were used from 11 studies with Jersey cows at the University of Nebraska–Lincoln, where samples were analyzed after drying (n = 299) or on an as-is basis (n = 134). Dried samples resulted in greater estimated error variance compared with as-is samples, and thus only as-is samples were used for final models. The as-is data set included a range (min to max) in dry matter intake (11.6–24.6 kg/d), N intake (282–642 g/d), UE excretion (1,390–3,160 kcal/d), UN excretion (85–220 g/d or 20.6–59.5% of N intake), and UC excretion (130–273 g/d). As indicated by a bias in residuals between observed and predicted ME as dietary crude protein (CP; range of 14.9–19.1%) increased, the National Research Council dairy model did not accurately predict ME of diets, as dietary CP varied. The relationship between UE (kcal/d) and UN (g/d) excretion was linear and had an intercept of 880 ± 140 kcal. Because an intercept of 880 is biologically unlikely, the intercept was forced through 0, resulting in linear and quadratic relationships. The regressions of UE (kcal/d) on UN (g/d) excretion were UE = 14.6 ± 0.32 × UN, and UE = 20.9 ± 1.0 × UN ? 0.0357 ± 0.0056 × UN2. In the quadratic regression, UE increased, but at a diminishing rate as UN excretion increased. As UC increased, UE linearly and quadratically increased. However, error variance was greater for regression with UC compared with UN as explanatory variables (8.42 vs. 7.42% of mean UE). The use of the quadratic regression between UN and UE excretion to predict ME resulted in a slope bias in ME predictions as dietary CP increased. The linear regression between UE and UN excretion removed slope bias between predicted ME and CP, and thus may be more appropriate for predicting UE across a wider range of dietary CP. Using equations to predict UE from UN should improve our ability to predict diet ME in Jersey cows compared with calculating ME directly from digestible energy.  相似文献   

19.
The NEL of calcium salts of long-chain fatty acids from palm oil was determined in mature Holstein cows. Twelve lactating (fed for ad libitum intake) and six nonlactating (restricted to near maintenance intake) Holstein cows were fed 0 or 2.95% fat supplement in diets formulated to contain 16 or 20% CP in a 2 x 2 factorial arrangement of treatments in a single reversal design within protein level. The fat supplement was substituted for ground corn and minerals. Two 6-d total collection balance trials were conducted during which cows were in open circuit respiration chambers. Intake of OM was lower for lactating cows fed the fat supplement (18.1 vs. 19.1 kg/d), but energy intake did not differ (93.2 Mcal/d). Total long-chain fatty acid intake was increased from 477 to 820 g/d with fat feeding. Apparent digestibility of long-chain fatty acids was increased 11.1 percentage units with increased dietary CP for lactating cows with no difference in fatty acid digestibility for the dry cows. Milk yield was higher (34.3 vs. 32.0 kg/d) with fat feeding, but milk energy yield did not differ (22.6 Mcal/d). The NEL of the fat supplement was estimated from the incremental differences in energy values within cows, assuming NEL of corn replaced by fat to be 1.96 Mcal/kg DM, and was determined to be 6.52 Mcal/kg DM (SE = 1.74). The efficiency of the use of metabolizable energy for lactation from dietary fat was 77.2%. The energy in calcium salts of long-chain fatty acids is utilized efficiently for lactation in mature cows.  相似文献   

20.
Feeding fat to lactating dairy cows may reduce methane production. Relative to cellulose, fermentation of hemicellulose is believed to result in less methane; however, these factors have not been studied simultaneously. Eight multiparous, lactating Jersey cows averaging (±SD) 98 ± 30.8 d in milk and body weight of 439.3 ± 56.7 kg were used in a twice-replicated 4 × 4 Latin square to determine the effects of fat and hemicellulose on energy utilization and methane production using a headbox-type indirect calorimetry method. To manipulate the concentration of fat, porcine tallow was included at either 0 or 2% of the diet dry matter. The concentration of hemicellulose was adjusted by manipulating the inclusion rate of corn silage, alfalfa hay, and soybean hulls resulting in either 11.3 or 12.7% hemicellulose (dry matter basis). The resulting factorial arrangement of treatments were low fat low hemicellulose (LFLH), low fat high hemicellulose (LFHH), high fat low hemicellulose (HFLH), and high fat high hemicellulose (HFHH). Neither fat nor hemicellulose affected dry matter intake, averaging 16.2 ± 1.18 kg/d across treatments. Likewise, treatments did not affect milk production, averaging 23.0 ± 1.72 kg/d, or energy-corrected milk, averaging 30.1 ± 2.41 kg/d. The inclusion of fat tended to reduce methane produced per kilogram of dry matter intake from 24.9 to 23.1 ± 1.59 L/kg, whereas hemicellulose had no effect. Increasing hemicellulose increased neutral detergent fiber (NDF) digestibility from 43.0 to 51.1 ± 2.35%. Similarly, increasing hemicellulose concentration increased total intake of digestible NDF from 6.62 to 8.42 ± 0.89 kg/d, whereas fat had no effect. Methane per unit of digested NDF tended to decrease from 64.8 to 49.2 ± 9.60 L/kg with increasing hemicellulose, whereas fat had no effect. An interaction between hemicellulose and fat content on net energy balance (milk plus tissue energy) was observed. Specifically, increasing hemicellulose in low-fat diets tended to increase net energy balance, but this was not observed in high-fat diets. These results confirm that methane production may be reduced with the inclusion of fat, whereas energy utilization of lactating dairy cows is improved by increasing hemicellulose in low-fat diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号