首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of dairy science》2021,104(12):12580-12599
Objectives were to determine the effects of 3 different levels of dietary cation-anion difference (DCAD) fed during the last 22 d of gestation to pregnant nulliparous cows on pre- and postpartum acid-base balance, mineral metabolism, and health responses. In all, 132 pregnant nulliparous Holstein cows were enrolled at 250 (248–253) d of gestation, blocked by genomic merit of energy-corrected milk yield, and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), −50 (N50, n = 45), or −150 (N150, n = 44) mEq/kg of dry matter. Dietary treatments were fed until calving, after which cows received the same lactation diet for the first 100 d postpartum. Urine and blood were sampled throughout the prepartum period and in the first weeks postpartum, and urine was assessed for pH, whereas blood was analyzed for gases, measures of acid-base balance, minerals, and metabolites. Calcium (Ca) and magnesium (Mg) retention and phosphorus (P) digestibility were evaluated in the last week of gestation and first week of lactation. Incidence of diseases was evaluated for the first 100 d postpartum. Data are presented in sequence as P200, N50, N150 (LSM ± SEM). Reducing the DCAD reduced urine (8.17 vs. 6.50 vs. 5.51 ± 0.11) and blood pH (7.442 vs. 7.431 vs. 7.410 ± 0.004) and induced a state of compensated metabolic acidosis with a reduction in blood HCO3 (28.4 vs. 26.7 vs. 24.9 ± 0.3 mM) and partial pressure of CO2 (41.8 vs. 40.1 vs. 39.1 ± 0.4 mmHg) prepartum. Reducing the DCAD linearly increased blood ionized Ca (iCa; 1.224 vs. 1.243 vs. 1.259 ± 0.008 mM) and serum total Ca (tCa; 2.50 vs. 2.53 vs. 2.56 ± 0.02 mM) prepartum, blood iCa on the day of calving, and serum Mg in the first days postpartum. Reducing the DCAD linearly increased the apparent absorption of Ca (12.9 vs. 19.0 vs. 20.9 ± 1.4 g/d) and Mg (7.0 vs. 9.9 vs. 10.4 ± 1.4 g/d) prepartum, but apparent retention of both Ca (13.9 g/d) and Mg (3.4 g/d) did not differ with treatment. Treatment did not affect digestibility of P pre- or postpartum or retention of Ca or Mg postpartum. Treatment did not affect the incidence or prevalence of subclinical hypocalcemia, hepatic composition, or the prevalence of fatty liver. Reducing the DCAD had a quadratic effect on incidence of fever (46.5 vs. 17.6 vs. 33.9 ± 7.0%), uterine diseases (36.3 vs. 25.6 vs. 46.0 ± 7.3%), and morbidity (41.4 vs. 28.1 vs. 55.6 ± 7.3%). Feeding a diet with −50 mEq/kg of dry matter promoted moderate changes in acid-base balance, altered mineral metabolism, and benefited health of nulliparous cows; however, further reducing the DCAD to −150 mEq/kg negated the benefits to health.  相似文献   

2.
The objectives were to evaluate the effects of feeding diets with 2 levels of negative dietary cation-anion differences (DCAD) during the last 42 or 21 d of gestation on performance and metabolism in dairy cows. The hypothesis was that extending feeding from 21 to 42 d and reducing the DCAD from ?70 to ?180 mEq/kg of dry matter (DM) would not be detrimental to performance. Holstein cows at 230 d of gestation were blocked by parity prepartum (48 entering their second lactation and 66 entering their third or greater lactation) and 305-d milk yield, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial. The 2 levels of DCAD, ?70 or ?180 mEq/kg of DM, and 2 feeding durations, the last 21 d (short) or the last 42 d (long) prepartum resulted in 4 treatments, short ?70 (n = 29), short ?180 (n = 29), long ?70 (n = 28) and long ?180 (n = 28). Cows in the short treatments were fed a diet with DCAD of +110 mEq/kg of DM from ?42 to ?22 d relative to calving. After calving, cows were fed the same diet and production and disease incidence were evaluated for 42 d in milk, whereas reproduction and survival was evaluated for 305 d in milk. Blood was sampled pre- and postpartum for quantification of metabolites and minerals. Reducing the DCAD linearly decreased prepartum DM intake between ?42 and ?22 d relative to calving (+110 mEq/kg of DM = 11.5 vs. ?70 mEq/kg of DM = 10.7 vs. ?180 mEq/kg of DM = 10.2 ± 0.4), and a more acidogenic diet in the last 21 d of the dry period reduced intake by 1.1 kg/d (?70 mEq/kg of DM = 10.8 vs. ?180 mEq/kg of DM = 9.7 ± 0.5 kg/d). Cows fed the ?180 mEq/kg of DM diet had increased concentrations of ionized Ca in blood on the day of calving (?70 mEq/kg of DM = 1.063 vs. ?180 mEq/kg of DM = 1.128 ± 0.020 mM). Extending the duration of feeding the diets with negative DCAD from 21 to 42 d reduced gestation length by 2 d (short = 277.2 vs. long = 275.3 d), milk yield by 2.5 kg/d (short = 40.4 vs. long = 37.9 ± 1.0 kg/d) and tended to increase days open because of reduced pregnancy per artificial insemination (short = 35.0 vs. long = 22.6%). Results suggest that increasing the duration of feeding diets with negative DCAD from 21 to 42 d prepartum might influence milk yield and reproduction of cows in the subsequent lactation, although yields of 3.5% fat- and energy-corrected milk did not differ with treatments. Reducing the DCAD from ?70 to ?180 mEq/kg of DM induced a more severe metabolic acidosis, increased ionized Ca concentrations prepartum and on the day of calving, and decreased colostrum yield in the first milking, but had no effects on performance in the subsequent lactation. Collectively, these data suggest that extending the feeding of an acidogenic diet beyond 21 d is unnecessary and might be detrimental to dairy cows, and a reduction in the DCAD from ?70 to ?180 mEq/kg of DM is not needed.  相似文献   

3.
The objectives of this experiment were to evaluate the effects of feeding diets with 2 dietary cation-anion difference (DCAD) levels and supplemented with either cholecalciferol (CH) or calcidiol (CA) during late gestation on lactation performance and energetic metabolism in dairy cows. The hypothesis was that combining a prepartum acidogenic diet with calcidiol supplementation would benefit peripartum Ca metabolism and, thus, improve energy metabolism and lactation performance compared with cows fed an alkalogenic diet or cholecalciferol. Holstein cows at 252 d of gestation were blocked by parity (28 nulliparous and 51 parous cows) and milk yield within parous cows, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial, with 2 levels of DCAD (positive, +130, and negative, ?130 mEq/kg) and 2 sources of vitamin D, CH or CA, fed at 3 mg per 11 kg of diet dry matter (DM). The resulting treatment combinations were positive DCAD with CH (PCH), positive DCAD with CA (PCA), negative DCAD with CH (NCH), or negative DCAD with CA (NCA), which were fed for the last 21 d of gestation. After calving, cows were fed the same lactation diet. Body weight and body condition were evaluated prepartum and for the first 49 d postpartum. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, and every 3 d thereafter until 30 d postpartum for quantification of hormones and metabolites. Lactation performance was evaluated for the first 49 d postpartum. Feeding a diet with negative DCAD reduced DM intake in parous cows by 2.1 kg/d, but no effect was observed in nulliparous cows. The negative DCAD reduced concentrations of glucose (positive = 4.05 vs. negative = 3.95 mM), insulin (positive = 0.57 vs. negative = 0.45 ng/mL), and insulin-like growth factor-1 (positive = 110 vs. negative = 95 ng/mL) prepartum. Treatments did not affect DM intake postpartum, but CA-supplemented cows tended to produce more colostrum (PCH = 5.86, PCA = 7.68 NCH = 6.21, NCA = 7.96 ± 1.06 kg) and produced more fat-corrected milk (PCH = 37.0, PCA = 40.1 NCH = 37.5, NCA = 41.9 ± 1.8 kg) and milk components compared with CH-supplemented cows. Feeding the negative DCAD numerically increased yield of fat-corrected milk by 1.0 kg/d in both nulliparous and 1.4 kg/d in parous cows. Minor differences were observed in postpartum concentrations of hormones and metabolites linked to energy metabolism among treatments. Results from this experiment indicate that replacing CH with CA supplemented at 3 mg/d during the prepartum period improved postpartum lactation performance in dairy cows.  相似文献   

4.
The objectives were to determine the effects of dietary cation-anion difference (DCAD) fed to pregnant cows during the last 22 d of gestation on offspring acid-base balance, metabolism, growth, and health preweaning. A total of 132 nulliparous Holstein cows were enrolled at 250 (248 to 253) d of gestation in a randomized block design. Cows were blocked by genomic merit of energy-corrected milk yield and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), ?50 (N50, n = 45), or ?150 (N150, n = 44) mEq/kg of dry matter (DM). Newborn calves (15 males and 28 females in P200, 22 males and 23 females in N50, and 18 males and 26 females in N150) were followed for the first 7 or 56 d of age if males or females, respectively. Measures of acid-base balance and concentrations of minerals in blood were measured in all calves on d 0 before colostrum feeding, and on d 1, 3, and 7. Each calf was fed 3.78 L of colostrum from the respective treatment, and apparent efficiency of IgG absorption was determined. All calves were weighed at birth, and females were weighed again at 21, 42, and 56 d of age. Concentrations in serum of total calcium (tCa), total magnesium (tMg), and total phosphorus (tP) were measured up to 56 d of age; intakes of milk and starter grain DM were measured daily from 21 to 56 d of age; and incidence of disease was recorded for the first 56 d of age in females. Treatment did not affect acid-base balance measured in all calves. Calves were born with metabolic and respiratory acidosis, which reversed by 1 d of age. In the first 24 h after birth, blood pH increased from 7.215 to 7.421 and bicarbonate from 26.2 to 31.7 mM, whereas partial pressure of CO2 decreased from 64.1 to 48.7 mm of Hg in all treatments. Maternal DCAD did not affect colostrum IgG content fed to calves (P200 = 95.0 vs. N50 = 91.0 vs. N150 = 97.1 ± 4.1 g/L) or apparent efficiency of IgG absorption (P200 = 33.1 vs. N50 = 33.1 vs. N150 = 34.2 ± 1.9%). Males were born heavier than females, but maternal DCAD did not affect birth weight of all calves (P200 = 37.7 vs. N50 = 37.3 vs. N150 = 37.8 ± 0.7 kg) or daily weight gain in females in the first 56 d of life (P200 = 0.80 vs. N50 = 0.81 vs. N150 = 0.77 ± 0.03 kg/d). Treatment did not affect intake of milk (P200 = 1.11 vs. N50 = 1.04 vs. N150 = 1.19 ± 0.06 kg/d) or starter grain DM (P200 = 0.27 vs. N50 = 0.27 vs. N150 = 0.21 ± 0.06 kg/d), or measures of feed efficiency. Treatment did not affect concentrations of minerals in serum, morbidity, or age at morbidity. Manipulating the DCAD of pregnant nulliparous dams during late gestation did not affect offspring performance in the first 2 mo of age.  相似文献   

5.
Our objective was to assess the effects of feeding negative dietary cation-anion difference (DCAD) prepartum diets on milk production, reproductive performance, and culling. Cows from 4 commercial farms in Ontario, Canada were enrolled in a pen-level controlled trial from November 2017 to April 2019. Close-up pens (1 per farm) with cows 3 wk before calving were randomly assigned to a negative DCAD (TRT; ?108 mEq/kg of dry matter; target urine pH 6.0–6.5) or a control diet (CON; +105 mEq/kg of dry matter with a placebo supplement). Each pen was fed TRT or CON for 3 mo (1 period), and then switched to the other treatment for the next period (4 periods per farm). Data from 15 experimental units (8 pen treatments in TRT and 7 in CON), with a total of 1,086 observational units (cows), were included. The effect of treatment on milk yield at the first 3 milk recording tests of lactation was assessed with linear regression models accounting for repeated measures. The risk of pregnancy at first artificial insemination and culling by 30, 60, and 305 d in milk (DIM) were analyzed with logistic regression models, and effects on time to first AI, pregnancy, and culling were assessed with Cox proportional hazards models. All models included treatment, parity, and their interactions, accounting for pen-level randomization and clustering of animals within farm with random effects, giving 10 degrees of freedom for treatment effects. Multiparous cows fed TRT produced more milk at the first (42.0 vs. 38.8 ± 1.2 kg/d) and second (44.2 vs. 41.7 ± 1.3 kg/d) milk tests. However, multiparous cows fed TRT tended to have 0.2 percentage units less milk fat content at these tests. Although multiparous cows fed TRT tended to have greater energy-corrected milk at the first test (least squares means ± standard error: TRT = 46.1 ± 0.9 vs. CON = 43.8 ± 1 kg/d), there were no differences observed in energy-corrected milk at the second or third tests. In primiparous cows, there was no effect of treatment on milk production. Multiparous cows fed TRT had greater pregnancy to first insemination (TRT = 42 ± 3 vs. CON = 32 ± 4%) and tended to have shorter time to pregnancy [hazard ratio (HR) = 1.20; 95% CI: 0.96–1.49]. In primiparous cows fed TRT, time to pregnancy was increased (HR = 0.76; 95% CI: 0.59–0.99). Culling by 30 DIM tended to be less in TRT (3.3 ± 1.1%) than CON (5.5 ± 1.8%). No effect of treatment on culling by 305 DIM was detected in primiparous cows, but in multiparous cows, the TRT diets decreased the odds of culling (21.3 ± 1.9 vs. 31.7 ± 2.8%) and daily risk of culling to 305 DIM (HR = 0.64; 95% CI: 0.46 to 0.89). Under commercial herd conditions, prepartum negative DCAD diets improved milk production and reproductive performance, and reduced culling risk in multiparous cows. In primiparous cows, TRT diets had no effect on milk yield or culling, but increased the time to pregnancy. Our results suggest that negative DCAD diets should be targeted to multiparous cows.  相似文献   

6.
The objectives were to use meta-analytic methods to determine the effects of changes in dietary cation-anion difference (DCAD) prepartum on productive performance and health of dairy cows. The literature was systematically reviewed, searching randomized experiments with transition cows that manipulated the prepartum DCAD or experiments with acidogenic diets in which dietary Ca, P, or Mg was manipulated. Forty-two experiments, including 134 treatment means and 1,803 cows, were included in the meta-analysis. Of those, 5 experiments with 15 treatment means reported responses for 151 nulliparous cows. Data collected included the mineral composition of prepartum diets, parity group prepartum, breed, days on treatment, and means and respective measure of variance for urine pH, dry matter intake (DMI), body weight, body condition, productive performance, concentrations of minerals and metabolites in blood, and incidence of diseases. Mixed effects meta-analyses were conducted weighting by the inverse of standard error of the means squared to account for the precision of each experiment. Models include the effects of DCAD, parity group prepartum, interaction between DCAD and parity group, and other covariates that showed significance in univariable analysis. Final models were selected based on parsimony and model fit. Reducing the prepartum DCAD reduced intake prepartum but improved intake postpartum in both parity groups. Interactions between DCAD and parity group occurred for yields of milk, fat-corrected milk (FCM), fat, and protein because reducing the DCAD improved those responses in parous cows; however, reducing the DCAD either had no effect on yields of milk and protein or reduced the yield of FCM and fat in nulliparous cows. The resulting equations from the statistical models predicted that reducing the DCAD from +200 to ?100 mEq/kg would increase blood total Ca on the day of calving from 1.86 to 2.04 ± 0.05 mM, DMI postpartum 1.0 kg/d, and milk yield 1.7 kg/d in parous cows. The increased concentrations of blood total Ca at calving and postpartum explained the marked reduction in risk of milk fever in parous cows with a reduction in DCAD. As the DCAD decreased, the risk of retained placenta and metritis also decreased, resulting in fewer disease events per cow in both nulliparous and parous cows. Dietary concentrations of Ca, P, or Mg prepartum had no effect on DMI or yields of milk and FCM; however, increasing dietary Ca within the study range of 0.16 to 1.98% of dry matter tended to increase the risk of milk fever in parous cows regardless of DCAD fed. Collectively, results support the recommendation of prepartum acidogenic diets to result in a negative DCAD to parous cows with improvements in lactation performance and reduced risk of diseases; however, the range of DCAD fed did not allow for detection of an optimum value for postpartum performance. On the other hand, despite improvements in blood concentrations of Ca and reduction in uterine diseases with a reduction in DCAD fed to nulliparous cows, productive performance was either depressed or unaffected and the limited number of experiments did not provide sufficient evidence for a recommended DCAD for this group of cows.  相似文献   

7.
The objectives of the experiment were to evaluate the effects of feeding diets with distinct dietary cation-anion difference (DCAD) levels and supplemented with 2 sources of vitamin D during the prepartum transition period on postpartum health and reproduction in dairy cows. The hypotheses were that feeding acidogenic diets prepartum would reduce the risk of hypocalcemia and other diseases, and the benefits of a negative DCAD treatment on health would be potentiated by supplementing calcidiol compared with cholecalciferol. Cows at 252 d of gestation were blocked by parity (28 nulliparous and 52 parous cows) and milk yield within parous cows, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial, with 2 levels of DCAD, positive (+130 mEq/kg) or negative (?130 mEq/kg), and 2 sources of vitamin D, cholecalciferol or calcidiol, fed at 3 mg for each 11 kg of diet dry matter. The resulting treatment combinations were positive DCAD with cholecalciferol (PCH), positive DCAD with calcidiol (PCA), negative DCAD with cholecalciferol (NCH), and negative DCAD with calcidiol (NCA), which were fed from 252 d of gestation to calving. After calving, cows were fed the same lactation diet supplemented with cholecalciferol at 0.70 mg for every 20 kg of dry matter. Blood was sampled 7 d before parturition, and at 2 and 7 d postpartum to evaluate cell counts and measures of neutrophil function. Postpartum clinical and subclinical diseases and reproductive responses were evaluated. Feeding a diet with negative DCAD eliminated clinical hypocalcemia (23.1 vs. 0%) and drastically reduced the incidence and daily risk of subclinical hypocalcemia, and these effects were observed in the first 48 to 72 h after calving. The diet with negative DCAD tended to improve the intensity of oxidative burst activity of neutrophils in all cows prepartum and increased the intensity of phagocytosis in parous cows prepartum and the proportion of neutrophils with killing activity in parous cows postpartum (58.5 vs. 67.6%). Feeding calcidiol improved the proportion of neutrophils with oxidative burst activity (60.0 vs. 68.7%), reduced the incidences of retained placenta (30.8 vs. 2.5%) and metritis (46.2 vs. 23.1%), and reduced the proportion of cows with multiple diseases in early lactation. Combining the negative DCAD diet with calcidiol reduced morbidity by at least 60% compared with any of the other treatments. Cows with morbidity had lower blood ionized Ca and serum total Ca concentrations than healthy cows. Treatments did not affect the daily risk of hyperketonemia in the first 30 d of lactation. Despite the changes in cow health, manipulating the prepartum DCAD did not influence reproduction, but feeding calcidiol tended to increase the rate of pregnancy by 55%, which reduced the median days open by 19. In conclusion, feeding prepartum cows with a diet containing a negative DCAD combined with 3 mg of calcidiol benefited health in early lactation.  相似文献   

8.
Objectives were to evaluate the effect of prepartum energy intake on performance of dairy cows supplemented with or without ruminally protected choline (RPC; 0 or 17.3 g/d of choline chloride; 0 or 60 g/d of ReaShure, Balchem Corp., New Hampton, NY). At 47 ± 6 d before the expected calving date, 93 multiparous Holstein cows were assigned randomly to 1 of 4 dietary treatments in a 2 × 2 factorial arrangement. Cows were fed energy to excess [EXE; 1.63 Mcal of net energy for lactation/kg of dry matter (DM)] or to maintenance (MNE; 1.40 Mcal of net energy for lactation/kg of DM) in ad libitum amounts throughout the nonlactating period. The RPC was top-dressed for 17 ± 4.6 d prepartum through 21 d postpartum (PP). After calving, cows were fed the same methionine-balanced diet, apart from RPC supplementation, through 15 wk PP. Liver was biopsied at ?14, 7, 14, and 21 d relative to parturition. Cows fed EXE or MNE diets, respectively, consumed 40 or 10% more Mcal/d than required at 15 d before parturition. Cows fed the MNE compared with the EXE diet prepartum consumed 1.2 kg/d more DM postpartum but did not produce more milk (41.6 vs. 43.1 kg/d). Thus, PP cows fed the EXE diet prepartum were in greater mean negative energy balance, tended to have greater mean concentrations of circulating insulin, fatty acids, and β-hydroxybutyrate, and had greater triacylglycerol in liver tissue (8.3 vs. 10.7% of DM) compared with cows fed the MNE diet prepartum. Cows fed RPC in transition tended to produce more milk (43.5 vs. 41.3 kg/d) and energy-corrected milk (44.2 vs. 42.0 kg/d) without increasing DM intake (23.8 vs. 23.2 kg/d) during the first 15 wk PP, and tended to produce more milk over the first 40 wk PP (37.1 vs. 35.0 kg/d). Energy balance of cows fed RPC was more negative at wk 2, 3, and 6 PP, but mean circulating concentrations of fatty acids and β-hydroxybutyrate did not differ from those of cows not fed RPC. Despite differences in energy balance at 2 and 3 wk PP, mean concentration of hepatic triacylglycerol did not differ between RPC treatments. Feeding RPC reduced the daily prevalence of subclinical hypocalcemia from 25.5 to 10.5%, as defined by concentrations of total Ca of <8.0 mg/dL in serum in the first 7 d PP. Pregnancy at first artificial insemination tended to be greater for cows fed RPC (41.3 vs. 23.6%), but the proportion of pregnant cows did not differ by 40 wk PP. Heifers born from singleton calvings from cows fed RPC tended to experience greater daily gain between birth and 50 wk of age than heifers from cows not supplemented with RPC. Feeding RPC for approximately 38 d during the transition period tended to increase yield of milk for 40 wk regardless of amount of energy consumed during the pregnant, nonlactating period.  相似文献   

9.
Objectives were to evaluate the associations between residual dry matter (DM) intake (RFI) and residual N intake (RNI) in early lactation, from 1 to 5 wk postpartum, and in mid lactation, from 9 to 15 wk postpartum, and assess production performance and risk of diseases in cows according to RFI in mid lactation. Data from 4 experiments including 399 Holsteins cows were used in this study. Intakes of DM and N, yields of milk components, body weight, and body condition were evaluated daily or weekly for the first 105 d postpartum. Milk yield by 305 d postpartum was also measured. Incidence of disease was evaluated for the first 90 d postpartum and survival up to 300 d postpartum. Residual DM and N intake were calculated in early and mid lactation as the observed minus the predicted values, which were based on linear models that accounted for major energy or N sinks, including daily milk energy or N output, metabolic body weight, and daily body energy or N changes, and adjusting for parity, season of calving, and treatment within experiment. Cows were ranked by RFI and RNI in mid lactation and categorized into quartiles (Q1 = smallest RFI, to Q4 = largest RFI). Increasing efficiency in mid lactation resulted in linear decreases in RFI (depicted from Q1 to Q4; ?0.93, ?0.05, ?0.04, and 0.98 kg/d), DMI (16.0, 16.9, 17.3, and 18.4 kg/d), net energy for lactation (NEL) intake (26.8, 28.4, 29.0, and 30.8 Mcal/d), and NEL balance (?9.0, ?8.1, ?8.2, and ?5.5 Mcal/d) during early lactation, but no differences were observed in body NEL or N changes or yield of energy-corrected milk in the first 5 wk of lactation. Residual DM intake in mid lactation was associated with RFI (Pearson r = 0.43, and Spearman ρ = 0.32) and RNI (r = 0.44, ρ = 0.36) in early lactation, and with RNI in mid lactation (r = 0.91, ρ = 0.84). Similarly, RNI in mid lactation was associated with RNI in early lactation (r = 0.42, ρ = 0.35). During the first 15 wk postpartum, more efficient cows in mid lactation consumed 3.5 kg/d less DM (Q1 = 19.3 vs. Q4 = 22.8 kg/d) and were more N efficient (Q1 = 31.6 vs. Q4 = 25.8%), at the same time that yields of milk (Q1 = 39.0 vs. Q4 = 39.4 kg/d), energy-corrected milk (Q1 = 38.6 vs. Q4 = 39.3 kg/d), and milk components did not differ compared with the quartile of least efficient cows. Furthermore, RFI in mid lactation was not associated with 305-d milk yield, incidence of diseases in the first 90 d postpartum, or survival by 300 d postpartum. Collectively, rankings of RFI and RNI are associated and repeatable across lactation stages. The most feed-efficient cows were also more N efficient in early and mid lactation. Phenotypic selection of RFI based on measurements in mid lactation is associated with improved efficiency without affecting production or health in dairy cows.  相似文献   

10.
《Journal of dairy science》2023,106(2):954-973
The objectives of the experiment were to determine the effects of supplementing 2 amounts of 25-hydroxyvitamin D3 (calcidiol; CAL) compared with equal amounts of vitamin D3 (cholecalciferol; CHOL) on serum concentrations, absorptions, and retentions of Ca, Mg, and P in periparturient dairy cows. One hundred seventy-seven (133 parous and 44 nulliparous) pregnant Holstein cows were enrolled in the experiment. Cows were blocked by parity and previous lactation milk yield (parous) or genetic merit for energy-corrected milk yield (nulliparous) and assigned randomly to receive 1 or 3 mg/d of CAL or CHOL in a 2 × 2 factorial arrangement of treatments. Treatments were provided to individual cows as a top-dress to the prepartum diet from 250 d gestation until parturition. The prepartum diet had a dietary cation-anion difference of ?128 mEq/kg of dry matter. All cows were fed a common postpartum diet containing 46 μg of vitamin D3/kg of dry matter without further supplementation of treatments. Concentrations of vitamin D metabolites, Ca, Mg, and P in serum were measured pre- and postpartum, in addition to total-tract digestibility and urinary excretion of Ca, Mg, and P in the prepartum period. Feeding 3 mg compared with 1 mg of CAL increased serum 25-hydroxyvitamin D3 (CAL1 = 94 vs. CAL3 = 173 ± 3 ng/mL). In comparison, the increment in serum 25-hydroxyvitamin D3 from feeding 3 mg compared with 1 mg of CHOL was small (CHOL1 = 58 vs. CHOL3 = 64 ± 3 ng/mL). Feeding CAL increased prepartum concentration of P in serum compared with CHOL (CHOL = 1.87 vs. CAL = 2.01 ± 0.02 mM), regardless of the amount fed, but neither source nor amount affected prepartum Ca or Mg in serum. Feeding CAL increased serum Ca and P for the first 11 d postpartum compared with CHOL (CHOL = 2.12 vs. CAL = 2.16 ± 0.01 mM serum Ca; CHOL = 1.70 vs. CAL = 1.78 ± 0.02 mM serum P) but the amount of vitamin D did not affect postpartum concentrations of Ca, Mg, and P in serum. Feeding CAL increased prepartum apparent digestibility of Ca compared with CHOL (CHOL = 26.6 vs. CAL = 33.5 ± 2.8%) but treatments did not affect Ca retention prepartum. Neither source nor amount of vitamin D affected Mg and P apparent digestibility, but CAL decreased the concentration of P excreted in urine during the prepartum period (CHOL = 1.8 vs. CAL = 0.8 ± 0.3 g/d). Calcidiol tended to increase the amount of Ca secreted in colostrum (CHOL = 9.1 vs. CAL = 11.2 ± 0.9 g/d) and Ca excreted in urine postpartum (CHOL = 0.4 vs. CAL = 0.6 ± 0.1 g/d) compared with CHOL. Collectively, feeding CAL at 1 or 3 mg/d compared with CHOL in the last 24 d of gestation is an effective way to increase periparturient serum P concentration and postpartum serum Ca of dairy cows fed a prepartum diet with negative DCAD.  相似文献   

11.
《Journal of dairy science》2022,105(7):5761-5775
Our objective was to investigate the effects of prepartum metabolizable protein (MP) supply and management strategy on milk production and blood biomarkers in early lactation dairy cows. Ninety-six multigravida Holstein cows were used in a randomized complete block design study, blocked by calving date, and then assigned randomly to 1 of 3 treatments within block. Cows on the first treatment were fed a far-off lower MP diet [MP = 83 g/kg of dry matter (DM)] between ?55 and ?22 d before expected calving and then a close-up lower MP diet (MP = 83 g/kg of DM) until parturition (LPLP). Cows on the second treatment were fed the far-off lower MP diet between ?55 to ?22 d before expected parturition and then a prepartum higher MP diet (MP = 107 g/kg of DM) until calving (LPHP). Cows on the third treatment had a shortened 43-d dry period and were fed the prepartum higher MP diet from dry-off to parturition (SDHP). After calving, cows received the same fresh diet from d 0 to 14 and the same high diet from d 15 to 84. Data were analyzed separately for wk ?6 to ?1 and wk 1 to 12, relative to parturition. Dry matter intake from wk ?6 to ?1 was not different between LPHP and LPLP and increased for SDHP compared with LPLP. In contrast, dry matter intake for wk 1 to 12 postpartum did not change for LPHP versus LPLP or for SDHP versus LPLP. Compared with LPLP cows, LPHP cows had lower energy-corrected milk yield and tended to have decreased milk fat yield during wk 1 to 12 of lactation. Conversely, yields of energy-corrected milk and milk fat and protein were similar for SDHP compared with LPLP. Plasma urea N during wk ?3 to ?1 increased for LPHP versus LPLP and for SDHP versus LPLP; however, no differences in plasma urea N were observed postpartum. Elevated prepartum MP supply did not modify circulating total fatty acids, β-hydroxybutyrate, total protein, albumin, or aspartate aminotransferase during the prepartum and postpartum periods. Increased MP supply prepartum combined with a shorter dry period (SDHP vs. LPLP) tended to increase whole-blood β-hydroxybutyrate postpartum; however, other blood metabolites were not affected. Taken together, under the conditions of this study, elevated MP supply in close-up diets reduced milk production without affecting blood metabolites in multiparous dairy cows during early lactation. A combination of a shorter dry period and increased prepartum MP supply (i.e., SDHP vs. LPLP) improved prepartum dry matter intake without modifying energy-corrected milk yield and blood biomarkers in early lactation cows.  相似文献   

12.
Objectives of the experiment were to determine the length of exposure to an acidogenic diet that would elicit changes in acid-base balance, mineral digestion, and response to parathyroid hormone (PTH)-induced changes in blood Ca and vitamin D3 in prepartum dairy cows. Nonlactating parous Holstein cows (n = 20) at 242 d of gestation were blocked by lactation (1 or >1) and pretreatment dry matter (DM) intake and, within block, they were randomly assigned to a diet with a dietary cation-anion difference (DCAD) of +200 mEq/kg of DM (DCAD +200) or an acidogenic diet with ?150 mEq/kg of DM (DCAD ?150). Water and DM intake were measured and blood was sampled daily. Urine was sampled every 3 h for 36 h, and then daily. During PTH challenges on d 3, 8, and 13, cows received i.v. PTH 1–34 fragment at 0.05 µg/kg of body weight every 20 min for 9 h to mimic the pulsatile release of endogenous PTH. Blood was sampled at 0 h, and hourly thereafter until 10 h, and at 12, 18, 24, 36, and 48 h relative to each challenge. Acid-base measures and concentrations of ionized Ca (iCa) in whole blood, and total Ca, Mg, P, and vitamin D metabolites in plasma were evaluated. On d 2 and 7, Ca, Mg, and P balances were evaluated. Cows fed DCAD ?150 had smaller blood pH (7.431 vs. 7.389) and HCO3? (27.4 vs. 22.8 mM) compared with DCAD +200, and metabolic acidosis in DCAD ?150 was observed 24 h after dietary treatments started. Concentrations of iCa begin to increase 24 h after feeding the acidogenic diet, and it was greater in DCAD ?150 compared with DCAD +200 by 3 d in the experiment (1.23 vs. 1.26 mM). During the PTH challenges, cows fed DCAD ?150 had greater concentration of iCa and area under the curve for iCa than those fed DCAD +200 (48.2 vs. 50.7 mmol/L × hour), and there was no interaction between treatment and challenge day. Concentration of 1,25-dihydroxyvitamin D3 in plasma did not differ during the PTH challenge, but change in 1,25-dihydroxyvitamin D3 relative to h 0 of the challenge was smaller in cows fed DCAD ?150 than cows fed DCAD +200 (44.1 vs. 32.9 pg/mL). Urinary loss of Ca was greater in cows fed DCAD ?150 compared with DCAD +200 (1.8 vs. 10.8 g/d); however, because digestibility of Ca increased in cows fed DCAD ?150 (19.7 vs. 36.6%), the amount of Ca retained did not differ between treatments. Diet-induced metabolic acidosis was observed by 24 h after dietary treatment started, resulting in increases in concentration of iCa in blood observed between 1 and 3 d. Collectively, present results indicate that tissue responsiveness to PTH and changes in blood concentrations of iCa and digestibility of Ca are elicited within 3 d of exposure to an acidogenic diet. The increased apparent digestibility of Ca compensated for the increased urinary loss of Ca resulting in similar Ca retention.  相似文献   

13.
Spray-dried plasma protein (SDP) compared with blood meal (BM) may contain various functional and active components that may benefit animal health. The objective of this experiment was to investigate the effects of feeding SDP or BM on production and blood profile in dairy cows during the transition and early-lactation periods. Seventy-two Holstein cows at 14 d before calving were used in a randomized block design. During the prepartum period, cows were fed a typical late-gestation diet containing BM (100 g/cow per day; 100BM, n = 24) or SDP (100 g/cow per day; 100SDP; n = 48). After calving, cows that were fed BM prepartum were fed a typical lactation diet formulated to provide 100 g/d of BM (100BM). Half the cows that were fed 100SDP prepartum were fed a lactation diet formulated to provide 100 g/d of SDP (100SDP; n = 24), and half were fed a diet formulated to provide 400 g/d of SDP (400SDP; n = 24) on a dry matter basis where SDP replaced BM (100SDP) or BM and soybean products (400SDP). All diets were balanced for crude protein concentration and metabolizable protein supply assuming BM and SDP were equal in rumen-degradable protein and rumen-undegradable protein. All data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) as a randomized block design where contrasts were made for 100BM versus 100SDP for prepartum variables and 100BM versus 100SDP and 100SDP versus 400SDP for postpartum variables. Prepartum supplementation of SDP had no effect on plasma fatty acids and β-hydroxybutyrate (2 d before calving). Plasma fatty acids (255 ± 29 µEq/mL) and β-hydroxybutyrate (675 ± 70 µmol/L) at 8 and 14 d of lactation were not affected by SDP in the diet. Feeding SDP at 100 g/d compared with 100BM increased or tended to increase milk fat, protein, and lactose contents for 16 wk after parturition. Providing SDP at 400 g/d in the diet increased milk yield (42 vs. 39 kg/d), energy-corrected milk (44 vs. 41 kg/d), energy-corrected milk per kilogram of dry matter intake, and yields of milk fat (1.60 vs. 1.48 kg/d), protein (1.21 vs. 1.16 kg/d), and lactose compared with 100SDP. Body weight losses tended to be lower for 100SDP compared with 100BM without a difference between 100SDP and 400SDP. Plasma histidine concentration (d 14 of lactation) was lower for SDP compared with 100BM. In addition, plasma 1-methyl-l-histidine tended to be lower as inclusion rate of SDP increased. In conclusion, SDP at 400 g/d increased milk and milk component yields without an increase in feed intake. Studies evaluating effects of functional and active compounds in SDP on gut microbiome, gut health, and immune functions may be needed to determine mode of action.  相似文献   

14.
The objectives were to review the published literature and use meta-analytic methods to determine the effects of dietary protein fed prepartum on productive performance of dairy cows. The hypothesis was that responses to dietary protein prepartum would differ between nulliparous and parous cows, and performance would be maximized at a greater protein supply in nulliparous than in parous cows. The literature was systematically reviewed, searching randomized experiments in which the prepartum dietary content or degradability of protein was manipulated. Twenty-seven experiments including 125 treatment means and 1,801 cows were included in the meta-analysis. Of those, 8 experiments with 27 treatment means reported responses for 510 nulliparous cows. Data collected included the ingredient composition and chemical analyses of prepartum diets, parity group, and means and respective measures of variance for productive responses. Mixed model meta-analysis was conducted and statistical models investigated the effects of dietary crude protein (CP) or supply of metabolizable protein (MP) prepartum on performance. Supply of MP was predicted using the National Research Council Nutrient Requirements of Dairy Cattle (2001) model. The mean ± standard deviation and median (range) concentrations of dietary CP fed to cows prepartum were 14.4 ± 2.2 and 14.4% (8.9 to 20.9%), resulting in mean and median (range) intakes of CP prepartum of 1,720 ± 432 and 1,734 g/d (745 to 2,482 g/d). Predicted prepartum supply of MP averaged 822 ± 157 in nulliparous cows, ranging from 517 to 1,094 g/d, and 1,146 ± 316 in parous cows, ranging from 463 to 1,733 g/d. Increasing prepartum CP content or predicted supply of MP improved postpartum dry matter intake in nulliparous cows, but increasing prepartum CP content reduced prepartum dry matter intake in parous cows. Yields of milk and fat-corrected milk increased with increasing prepartum supply of MP in nulliparous but not in parous cows. Yields of fat and protein increased in nulliparous cows with increased CP content or supply of MP. Alternatively, in parous cows, yield of milk fat was not influenced by supply of MP but responded quadratically to dietary CP content and was maximized at approximately 14% CP. Dietary CP had no effect on protein yield in parous cows, but increasing the supply of MP improved protein yield only in cows from experiments with >36 kg/d of milk production, whereas MP supply had no effect on protein yield of parous cows from experiments with <28 kg/d of milk production. Performance of dairy cows was responsive to prepartum supply of MP and nulliparous benefited from diets with increased MP intake. Based on current results, production responses for nulliparous cows increased linearly up to the maximum MP intake of 1,100 g/d observed in the study, whereas for parous cows, only yield of milk protein in cows producing more than 36 kg of milk/d was influenced by supplying more than 800 g/d of MP.  相似文献   

15.
Prepartum diets influence cow performance for weeks to months postpartum. This observation leads to questions about milk yield and physiological and health responses to diets with negative dietary cation-anion difference (DCAD). Further, responses to increased intake of a diet with lower DCAD (Eq/d) have not been explored using meta-analysis. Our objectives were to explore the effects of prepartum DCAD intake on metabolism and production and health as well as the potential for differences in intake of other macrominerals to influence responses to differences in DCAD intake using classical meta-analytical methods. Not all treated groups were fed a diet with negative DCAD, and the effect studied is that of reducing the DCAD. We hypothesized that reducing DCAD intake would improve Ca metabolism and postpartum performance. We used a maximum of 58 comparisons from 31 experiments and a total of 1,571 cows. Intakes of DCAD were 2.28 Eq/d and ?0.64 Eq/d for the control, higher DCAD and treated, lower DCAD groups, respectively. Diets with lower DCAD reduced urine pH [standardized mean difference (SMD) = 1.90 and weighted mean difference (WMD) ?1.23 pH]. Intake of lower DCAD decreased prepartum DMI (SMD = 0.23; WMD = 0.29 kg/d), increased postpartum DMI (SMD = 0.40; WMD = 0.63 kg/d), and increased milk yield (SMD = 0.172). However, we found an interaction with parity; diets with lower DCAD increased milk yield in parous cows (SMD = 0.29; WMD = 1.1 kg/d) but resulted in numerically lower milk yield in nulliparous cows (SMD = ?0.20; WMD = 1.28 kg/d) compared with controls. The FCM yield increased with treatment (SMD = 0.12; WMD = 0.56 kg/d); however, yield of treated cows tended to be greater in parous cows but smaller for nulliparous cows compared with controls. Milk fat percentage, milk fat yield, and milk protein percentages were not affected by treatment, although milk protein yield tended to increase in cows fed the lower DCAD diet (SMD = 0.21; WMD = 0.02 kg/d). Treatment increased blood Ca (SMD = 0.53; WMD = 0.13 mM) and P (SMD = 0.40; WMD = 0.13 mM) on the day of calving and Ca postpartum (SMD = 0.36; WMD = 0.06 mM). Treated cows had smaller concentration of blood BHB before calving than controls (SMD = ?0.39; WMD = ?0.04 mM). Reducing DCAD in cows resulted in decreased risks of clinical hypocalcemia (risk ratio = 0.60) and retained placenta (risk ratio = 0.59), and reduced the odds of metritis (odds ratio = 0.46) and overall disease (OR = 0.61). We observed no effect on risk of abomasal displacement or mastitis and no effect of differences between treated and control cows in Ca intake (g/d) on the outcomes evaluated. A positive role for increased Mg intake between groups for increased milk fat yield and in reducing the risk of retained placenta was identified. Diets with lower DCAD improved performance of parous dairy cows, and our findings suggest a need for more studies on the effects of a lower DCAD on nulliparous transition cows.  相似文献   

16.
Our objectives were to determine if dietary cation-anion difference (DCAD) and source of anions influence periparturient feed intake and milk production of dairy cattle during the transition period. Diets differed in DCAD (cationic or anionic) and anionic supplement. The 4 diets used prepartum were (1) control [DCAD +20 mEq/100 g of dry matter (DM)], (2) Bio-Chlor (DCAD −12 mEq/100 g of DM; Church & Dwight Co. Inc., Princeton, NJ), (3) Fermenten (DCAD −10 mEq/100 g of DM; Church & Dwight Co. Inc.), and (4) salts (DCAD −10 mEq/100 g of DM). Urine pH was lower for cows that consumed an anionic diet prepartum compared with control. Prepartum diet had no effect on prepartum dry matter intake (DMI) of multiparous or primiparous cows. Postpartum DMI and milk yield for multiparous cows fed anionic diets prepartum were greater compared with those fed the control diet. Postpartum DMI and milk yield of primiparous cows were similar for prepartum diets. Feeding prepartum anionic diets did not affect plasma Ca at or near calving. However, cows fed anionic diets began their decline in plasma Ca later than control cows. Postpartum β-hydroxybutyrate and nonesterified fatty acids were lower for primiparous cows fed prepartum anionic diets compared with those fed the control diet. Prepartum and postpartum plasma glucose concentrations were not affected by prepartum diet for all cows. Liver triglyceride differed for parity by day. Parities were similar at 21 d prepartum, but at 0 d and 21 d postpartum, levels were greater for multiparous cows. Results indicate that decreasing the DCAD of the diet during the prepartum period can increase postpartum DMI and milk production of multiparous cows without negatively affecting performance of primiparous cows.  相似文献   

17.
The objectives of this study were to determine the effect of decreasing dietary cation-anion difference [DCAD; (Na+ + K+) ? (Cl? + S2?)] of the prepartum diet on aspects of mineral metabolism, energy metabolism, and performance of peripartum dairy cows. Multiparous Holstein cows (n = 89) were enrolled between 38 and 31 d before expected parturition and randomized to treatments in a completely randomized design (restricted to balance for previous 305-d mature equivalent milk production, parity, and body condition score) at 24 d before expected parturition. Treatments consisted of a low-K ration without anion supplementation [CON; n = 30, DCAD = +18.3 mEq/100 g of dry matter (DM)]; partial anion supplementation to a low-K ration (MED; n = 30, DCAD = +5.9 mEq/100 g of DM); and anion supplementation to a low-K ration to reach a targeted average urine pH between 5.5 and 6.0 (LOW; n = 29, DCAD = ?7.4 mEq/100 g of DM). Cows were fed a common postpartum diet and data collected through 63 d in milk. Urine pH (CON = 8.22, MED = 7.89, and LOW = 5.96) was affected quadratically by decreasing prepartum DCAD. A linear relationship between urine pH and urine Ca:creatinine ratio was observed (r = ?0.81). Plasma Ca concentrations in the postpartum period (d 0 to 14; CON = 2.16, MED = 2.19, and LOW = 2.27 mmol/L) were increased linearly with decreasing prepartum DCAD. A treatment by parity (second vs. third and greater) interaction for postpartum plasma Ca concentration suggested that older cows had the greatest response to the low DCAD diet and older cows fed LOW had decreased prevalence of hypocalcemia after calving. A quadratic effect of decreasing DCAD on prepartum DMI was observed (CON = 13.6, MED = 14.0, and LOW = 13.2 kg/d). Milk production in the first 3 wk postpartum was increased linearly with decreasing DCAD (CON = 40.8, MED = 42.4, and LOW = 43.9 kg/d) and DMI in this period also tended to linearly increase (CON = 20.2, MED = 20.9, and LOW = 21.3 kg/d). Overall, effects on intake and milk yield analyzed over wk 1 to 9 postpartum were not significant. This study demonstrates that feeding lower DCAD diets prepartum improves plasma Ca status in the immediate postpartum period and results in increased DMI and milk production in the 3 wk after parturition. Compared with no anion supplementation or lower levels of anion supplementation, greater improvements were observed with the lower DCAD feeding strategy, in which an average urine pH of 5.5 to 6.0 was targeted.  相似文献   

18.
Bone-derived hormones play an important role in metabolism. This study examined the hypothesis that interactions between bone and energy metabolism, particularly those involving osteocalcin, are present in dairy cattle and have feedback mechanisms over time. Associations between metabolites in blood were examined in 32 Holstein cows blocked by parity and milk yield and randomly allocated to diets containing either 0.27 mg/kg dry matter (DM) calcidiol or cholecalciferol for an anticipated intake of 3 mg/d (120,000 IU/d) at 11 kg of DM, and positive (+130 mEq/kg DM) or negative (?130 mEq/kg DM) dietary cation-anion difference (DCAD) from 252 d of gestation to calving. Blood was sampled every 3 d, from 9 d prepartum to 30 d postpartum, and plasma concentrations of vitamin D3, 25-hydroxyvitamin D3, adiponectin, C-telopeptide of type 1 collagen (CTX1), glucose, insulin-like growth factor 1 (IGF1), insulin, undercarboxylated osteocalcin (uOC), and carboxylated osteocalcin (cOC) were determined. Feeding calcidiol compared with cholecalciferol increased plasma concentrations of 25-hydroxyvitamin D3 pre- (264.2 ± 8.0 vs. 61.3 ± 8.0 ng/mL) and postpartum (170.8 ± 6.2 vs. 51.3 ± 6.2 ng/mL) but decreased concentrations of vitamin D3 pre- (1.2 ± 0.6 vs. 14.5 ± 0.6 ng/mL) and postpartum (1.9 ± 0.4 vs. 3.2 ± 0.6 ng/mL). Prepartum, cows fed the negative DCAD diet had reduced concentrations of vitamin D3 and glucose compared with cows fed a positive DCAD. The combination of negative DCAD and cholecalciferol reduced IGF1 concentrations prepartum. The DCAD treatment had no effect on postpartum concentrations of metabolites. Nulliparous cows had increased concentrations of OC, CTX1, IGF1, glucose, and insulin compared with parous cows. Time series analysis identified associations between metabolites on the same day and over 3-d lags up to ±9 d that suggest feedback between 25-hydroxyvitamin D3 and vitamin D3 in the negative lags, indicating that 25-hydroxyvitamin D3 may exert feedback on vitamin D3 but not vice versa. We found evidence of a feedback mechanism between vitamin D3 and IGF1, with positive effect size (ES) on the same day and 3 d later, and negative ES 9 d later, that was more evident in cholecalciferol-fed cows. This suggests an important role of IGF1 in integrating bone metabolism with energy and protein metabolic pathways. Evidence of feedback was found between uOC and particularly cOC with IGF1, with positive ES on the same day but negative ES 6 d before and 6 d after. An association between uOC or cOC and IGF1 has not been previously identified in cattle and suggests that both uOC and cOC may have marked biological activity. Associations between OC and insulin identified in mice were not observed herein, although associations between OC and glucose were similar to those between IGF1 and glucose, supporting associations between glucose, OC, and IGF1. We provide further statistical evidence of crosstalk between vitamin D compounds, bone hormones, and energy metabolism in cattle. In particular, associations between uOC or cOC and IGF1 may provide links between prepartum diets and observations of prolonged increases in milk production and allow better control of peripartum metabolism.  相似文献   

19.
The objective of this study was to evaluate the effects of the starch content of pre- and postpartum diets on productivity, plasma energy metabolites, and serum markers of inflammation of dairy cows during the calving transition period. Eighty-eight primiparous and multiparous cows were randomly assigned to pre- and postpartum dietary treatments balanced for parity and pretrial body condition score at d 28 ± 3 before expected calving date. Cows were fed either a control [Control; 14.0% starch, dry matter (DM) basis] or high-starch (High; 26.1% starch, DM basis) prepartum diet commencing 28 ± 3 d before expected calving date. Following calving, cows were fed either a high-fiber (HF; 33.8% neutral detergent fiber, 25.1% starch, DM basis) or high-starch (HS; 27.2% neutral detergent fiber, 32.8% starch, DM basis) postpartum diet for the first 20 ± 2 d following calving. Cows fed the High prepartum diet had greater DM intake (12.4 vs. 10.2 kg/d), plasma concentrations of insulin (1.72 vs. 14.2 ng/mL), glucose (68.1 vs. 65.0 mg/dL), and glucagon-like peptide-2 (0.41 vs. 0.32 ng/mL) before parturition, but increased plasma free fatty acid concentration (452 vs. 363 µEq/L) and milk fat yield (1.64 vs. 1.48 kg/d) after parturition. Cows fed the HS postpartum diet had lower plasma free fatty acid (372 vs. 442 µEq/L) and serum haptoglobin (0.46 vs. 0.70 mg/mL) concentrations over a 3-wk period after calving. In addition, there was a tendency for interaction between prepartum and postpartum diets for milk yield, where feeding the HS postpartum diet increased milk yield compared with the HF diet for cows fed the Control prepartum diet (40.8 vs. 37.9 kg/d) but not for cows fed the High prepartum diet. These results suggest that management efforts to minimize the change in diet fermentability during the calving transition by feeding the High prepartum diet, the HF postpartum diet, or both did not increase productivity of dairy cows but increased fat mobilization after calving. Our findings also suggest that feeding high-starch postpartum diets can decrease fat mobilization and serum indicators of systemic inflammation and increase milk production even with the transition from a low-starch prepartum diet.  相似文献   

20.
Nutritional strategies during the final weeks prepartum, the close-up period, aim to reduce immune suppression and metabolic imbalances. This paper reports results of 2 observational studies. Data from 2 previous experiments (study 1) were used to investigate the associations between days fed close-up diets (DINCUD) and uterine diseases (n = 1,230). In study 2, retrospective data from animals not used in study 1 (n = 11,962) were used to investigate the associations between DINCUD and removal from the herd and long-term reproductive and productive responses. Nulliparous (lactation = 0) and parous (lactation ≥1) cows were moved to close-up pens 28 d before expected calving date, but only parous cows were fed rations with negative dietary cation-anion difference. In study 1, study personnel diagnosed retained fetal membranes, metritis, and acute metritis postpartum. Length of the close-up period was tested for its linear and quadratic effects. The β-coefficients from the multivariable analyses were used to calculate the predicted outcome for each cow. In addition, the mean (±SEM) for cows with <10, 28 ± 3, and 42 ± 3 DINCUD are reported. Metritis was associated with the interaction between DINCUD and parity-diet (nulliparous: <10 d = 31.8 ± 9.2, 28 ± 3 d = 21.8 ± 0.7, 42 ± 3 d = 29.8 ± 2.1%; parous: <10 d = 81.7 ± 2.9, 28 ± 3 d = 11.1 ± 0.3, 42 ± 3 d = 14.8 ± 1.3%). The interaction between DINCUD and parity-diet was associated with total energy-corrected milk yield (nulliparous: ≤10 d = 7.91 ± 0.03, 28 ± 3 d = 8.17 ± 0.01, 42 ± 3 d = 8.15 ± 0.01 kg × 103; parous: ≤10 d = 7.99 ± 0.05, 28 ± 3 d = 9.79 ± 0.01, 42 ± 3 d = 9.52 ± 0.03 kg × 103) and percentage of cows pregnant by 305 days in milk (DIM; nulliparous: ≤10 d = 80.4 ± 0.4, 28 ± 3 d = 83.3 ± 0.1, 42 ± 3 d = 82.8 ± 0.2%; parous: ≤10 d = 59.5 ± 0.7, 28 ± 3 d = 78.3 ± 0.1, 42 ± 3 d = 73.1 ± 0.5%). Furthermore, the interaction between DINCUD and parity-diet was associated with removal from the herd by 305 DIM (nulliparous: ≤10 d = 27.0 ± 0.5, 28 ± 3 d = 20.7 ± 0.1, 42 ± 3 d = 21.8 ± 0.1%; parous: ≤10 d = 45.1 ± 0.7, 28 ± 3 d = 31.1 ± 0.1, 42 ± 3 d = 28.1 ± 0.3%). Jersey cows that are managed to achieve 28 DINCUD may have reduced odds of uterine diseases and improved reproductive and productive performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号