首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Journal of dairy science》2017,100(7):5250-5265
Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows.  相似文献   

2.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

3.
Total mixed rations containing corn silage (CS) or forage sorghum silage (SS) were fed to mid-lactation Holstein cows to determine the effects on feed intake, lactation performance, milk composition and fatty acid profile, nutrient digestibility, blood metabolites, rumen microbial N synthesis, and antioxidant status. The experiment was designed as a 2-period change-over (two 28-d periods) trial with 2 diets including CS diet or SS diet and 12 cows. Total replacement of CS with SS had no significant influence on dry matter intake. Substituting CS with SS had no effect on milk production, feed efficiency, and milk concentrations of fat, protein, lactose, and solids-not-fat, whereas yields of milk fat, protein, and lactose were greater for cows fed the CS diet. Blood parameters including glucose, albumin, cholesterol, triglyceride, total protein, urea N, and fatty acids were not affected by the dietary treatments. Apparent digestibility coefficients of dry matter, organic matter, crude protein, ether extract, neutral detergent fiber, and acid detergent fiber were not significantly influenced by the diets. Replacing CS with SS had no effect on total saturated fatty acids and total monounsaturated fatty acids, whereas total polyunsaturated fatty acid percentage was greater with the SS diet. Proportions of C20:0, C18:3n-3, and C18:3n-6 were affected by feeding SS. Cows fed CS had a greater amount of urinary purine derivatives. Feeding SS had a positive effect on total antioxidant capacity of blood and milk. In conclusion, SS can be fed to lactating Holstein cows as a total replacement for CS without undesirable effects on animal performance, but with positive effects on antioxidant capacity and polyunsaturated fatty acids of milk. This forage can be an excellent choice for dairy farms in areas where cultivation of corn is difficult due to water shortage.  相似文献   

4.
The effect of neutral detergent fiber (NDF) degradability of corn silage in diets containing lower and higher NDF concentrations on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows was measured. Eight ruminally cannulated Holstein cows averaging 91 ± 4 (standard error) days in milk were used in a replicated 4 × 4 Latin square design with 21-d periods (7-d collection periods). Dietary treatments were formulated to contain either conventional (CON; 48.6% 24-h NDF degradability; NDFD) or brown midrib-3 (BM3; 61.1% 24-h NDFD) corn silage and either lower NDF (LNDF) or higher NDF (HNDF) concentration (32.0 and 35.8% of ration dry matter, DM) by adjusting the dietary forage content (52 and 67% forage, DM basis). The dietary treatments were (1) CON-LNDF, (2) CON-HNDF, (3) BM3-LNDF, and (4) BM3-HNDF. Data were analyzed as a factorial arrangement of diets within a replicated Latin square design with the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with fixed effects of NDFD, NDF, NDFD × NDF, period(square), and square. Cow within square was the random effect. Time and its interactions with NDFD and NDF were included in the model when appropriate. An interaction between NDFD and NDF content resulted in the HNDF diet decreasing dry matter intake (DMI) with CON corn silage but not with BM3 silage. Cows fed the BM3 corn silage had higher DMI than cows fed the CON corn silage, whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had greater total-tract digestibility of organic matter and NDF than cows fed the CON diets. Compared with CON diets, the BMR diets accelerated ruminal NDF turnover. When incorporated into higher NDF diets, corn silage with greater in vitro 24-h NDFD and lower undegradable NDF at 240 h of in vitro fermentation (uNDF240) allowed for greater DMI intake than CON. In contrast, for lower NDF diets, NDFD of corn silage did not affect DMI, which suggests that a threshold level of inclusion of higher NDFD corn silage is necessary to observe enhanced lactational performance. Results suggest that there is a maximum gut fill of dietary uNDF240 and that higher NDFD corn silage can be fed at greater dietary concentrations.  相似文献   

5.
The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy.  相似文献   

6.
A leafy corn hybrid was compared to a grain corn hybrid as silage and high moisture grain to evaluate dry matter intake, milk yield, and milk composition. Sixteen multiparous Holstein cows averaging 97 DIM were used in a feeding trial based on 4 x 4 Latin squares with 21-d periods. Each of four diets contained (dry basis) 8% chopped hay, 42% corn silage, 11% high moisture corn grain, 10% whole, fuzzy cottonseed, and 29% protein concentrate. One diet used leafy corn as both high moisture grain and silage. A second diet contained grain corn hybrid (control) as both high moisture grain and silage. A third diet contained leafy corn for high moisture grain and control corn for silage and the fourth diet used control corn for high moisture grain and leafy corn for silage. Cows fed diets containing leafy silage produced more milk and milk protein and ate more DM than cows fed control silage. The corn hybrid used for high moisture grain did not influence milk yield or composition. Dry matter intake was greater for cows fed the diet containing both leafy high moisture grain and leafy silage than for cows fed both control high moisture grain and control silage, but milk yield and composition were not different. When fed as silage, the leafy corn hybrid used in this experiment supported greater DMI as well as higher milk and protein yields when compared to the grain corn hybrid.  相似文献   

7.
The current study investigated the relationship between in vitro and in vivo CH4 production by cows fed corn silage (CS)-based rations. In vivo CH4 production was measured in climate respiration chambers using 8 rumen-cannulated Holstein-Friesian cows. In vitro CH4 production was measured using rumen fluid from the 8 cows that were fully adapted to their respective experimental rations. The animals were grouped in 2 blocks, and randomly assigned to 1 of the 4 total mixed rations (TMR) that consisted of 75% experimental CS, 20% concentrate, and 5% wheat straw [dry matter (DM) basis]. The experimental CS were prepared from whole-plant corn that was harvested at either a very early (25% DM), early (28% DM), medium (32% DM), or late (40% DM) stage of maturity. The 4 experimental TMR and the corresponding CS served as substrate in 2 separate in vitro runs (each run representing 1 block of 4 animals) using rumen fluid from cows fed the TMR in question. No relationship was found between in vivo CH4 production and in vitro CH4 production measured at various time points between 2 and 48 h. None of the in vitro gas production (GP) and CH4 production parameters was influenced by an interaction between substrate and origin of rumen fluid. In vitro measured 48-h GP was not affected by the maturity of whole-plant corn, irrespective whether CS alone or as part of TMR was incubated in adapted rumen inoculum. Incubation of the experimental TMR did not affect the kinetics parameters associated with gas or CH4 production, but when CS alone was incubated the asymptote of GP of the soluble fraction was slightly decreased with increasing maturity of CS at harvest. In vitro CH4 production expressed as a percent of total gas was not affected by the maturity of whole-plant corn at harvest. Several in vitro parameters were significantly affected (GP) or tended to be affected (CH4) by diet fed to donor cows. It was concluded that the current in vitro technique is not suitable to predict in vivo CH4 production from CS-based rations.  相似文献   

8.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

9.
The objective of this study was to determine the effects of feeding alfalfa hay on chewing activity, rumen fermentation, and milk fat concentration of dairy cows fed wheat-based dried distillers grains with solubles (DDGS) as a partial replacement of barley silage. Thirty lactating Holstein cows (220 ± 51 DIM), 6 of which were ruminally cannulated, were used in a 3 × 3 Latin square design with 21-d periods. Cows were fed a control diet [CON; 50% barley silage and 50% concentrate mix on a dry matter (DM) basis], a diet in which barley silage was replaced with DDGS at 20% of dietary DM (DG), or a diet in which barley silage was replaced with DDGS and alfalfa hay at 20 and 10% of dietary DM, respectively (DG+AH). All diets contained approximately 20% crude protein. Compared with the CON diet, cows fed DG and DG+AH diets respectively had greater DM intake (20.1 vs. 23.1 and 22.7 kg/d); yields of milk (24.5 vs. 27.3 and 28.1 kg/d), milk protein (0.88 vs. 0.99 and 1.01 kg/d), and milk lactose (1.11 vs. 1.24 and 1.29 kg/d); and body weight gain (0.25 vs. 1.17 and 1.23 kg/d). However, compared with cows fed the CON diet, cows fed the DG and DG+AH diets respectively had lower chewing time (38.3 vs. 30.7 and 31.5 min/kg of DM intake), mean rumen pH (6.11 vs. 5.88 and 5.84), and minimum rumen pH (5.28 vs. 5.09 and 5.07) and a greater duration that rumen pH was below 5.8 (7.3 vs. 11.2 and 12.0 h/d). However, these response variables did not differ between cows fed the DG and DG+AH diets. Milk fat concentration differed among the 3 diets (3.92, 3.60, and 3.38% for CON, DG, and DG+AH, respectively), but milk fat yield was not affected by treatment. These results indicate that partially replacing barley silage with DDGS can improve productivity of lactating dairy cows but may decrease chewing time, rumen pH, and milk fat concentration, and that dietary inclusion of alfalfa hay may not alleviate such responses.  相似文献   

10.
We theorized that adding corn silage to a total mixed ration with alfalfa hay as the sole dietary forage would improve nutrient intake and chewing activity and thereby improve rumen fermentation and milk production. The objective of this research was to determine the effects of partial replacement of short alfalfa [physically effective (pe) neutral detergent fiber (NDF) >1.18 mm (peNDF>1.18) = 33.2%] with corn silage (CS, peNDF>1.18 = 51.9%) in yellow grease-supplemented total mixed rations on feed intake, chewing behavior, rumen fermentation, and lactation performance by dairy cows. Four multiparous (138 ± 3 d in milk) and 4 primiparous (115 ± 10 d in milk) Holstein cows were used in a 4 × 4 Latin square design experiment with four 21-d periods. Each period had 14 d of adaptation and 7 d of sampling, and parity was the square. Treatments were diets [dry matter (DM) basis] with 1) 40% alfalfa hay (ALF), 2) 24% alfalfa hay + 16% CS (CS40), 3) 20% alfalfa hay + 20% CS (CS50), and 4) 16% alfalfa hay + 24% CS (CS60). Diets had a forage-to-concentrate ratio of 40:60 on a DM basis. Cows had greater intake of DM and thus greater intakes of net energy for lactation, NDF, and peNDF when CS partially replaced alfalfa hay. Replacing alfalfa hay with CS increased daily eating and chewing times in all cows, and increased rumen pH at 4 h postfeeding in multiparous cows. Apparent total-tract digestibility coefficients for crude protein (CP) and NDF were not different among cows fed ALF, CS40, and CS50, but were lower for CS60 than for ALF. Energy-corrected milk yield was greater for CS40 and CS60 than for ALF. Milk protein yield was increased when CS replaced 40, 50, and 60% of alfalfa hay. Milk lactose was greater only for CS60, but milk lactose yield was greater for CS50 and CS60 than for ALF. Milk percentage and yield of fat did not differ among treatments. Therefore, CS partially replacing short alfalfa hay increased DM intake, consequently increased net energy for lactation and physically effective fiber intakes, and thus, improved milk and milk protein and lactose yields.  相似文献   

11.
Dried distillers grains with solubles (DDGS) has been commonly used as a dietary protein source for lactating dairy cows. However, there is a paucity of data evaluating the use of DDGS as a partial replacement of forage or grain. The objective of this study was to determine the effects of partially replacing barley silage or barley grain with corn/wheat-based DDGS on dry matter intake (DMI), chewing activity, rumen fermentation, and milk production. Six ruminally cannulated lactating Holstein cows were used in a replicated 3 × 3 Latin square design with 21-d periods. Cows were fed the control diet (CON: 45% barley silage, 5% alfalfa hay, and 50% concentrate mix), a low forage (LF) diet or a low grain (LG) diet, in which barley silage or barley grain was replaced by DDGS at 20% of dietary dry matter, respectively. All diets were formulated to contain 18% crude protein and fed as total mixed rations. Compared with CON, cows fed the LF diet had greater DMI (26.0 vs. 22.4 kg/d), yields of milk (36.4 vs. 33.0 kg/d), milk protein (1.18 vs. 1.05 kg/d), and milk lactose (1.63 vs. 1.46 kg/d), but milk fat yield was not affected. The LF diet decreased chewing time compared with the CON diet (29.7 vs. 39.1 min/kg of DMI), but did not affect rumen pH and duration of rumen pH below 5.8. Compared with CON, feeding the LG diet tended to increase minimum and maximum rumen pH, but did not affect DMI, milk yield, and milk composition in this study. These results indicate that a partial replacement of barley silage with DDGS can improve the productivity of lactating dairy cows without negatively affecting rumen fermentation and milk fat production. Barley grain can also be partially replaced by DDGS in diets for lactating dairy cows without causing negative effects on productivity.  相似文献   

12.
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM.  相似文献   

13.
The objective of this study was to evaluate the effects of supplementing xylanase on production performance, nutrient digestibility, and milk fatty acid profile in high-producing dairy cows consuming corn silage- or sorghum silage-based diets. Conventional corn (80,000 seeds/ha) and brown midrib forage sorghum (250,000 seeds/ha) were planted, harvested [34 and 32% of dry matter (DM), respectively], and ensiled for more than 10 mo. Four primiparous and 20 multiparous Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 19-d periods. Treatment diets consisted of (1) corn silage-based diet without xylanase, (2) corn silage-based diet with xylanase, (3) sorghum silage-based diet without xylanase, and (4) sorghum silage-based diet with xylanase. The xylanase product was supplemented at a rate of 1.5 g of product/kg of total DM. Corn silage had higher concentrations of starch (31.2 vs. 29.2%), slightly higher concentrations of crude protein (7.1 vs. 6.8%) and fat (3.7 vs. 3.2%), and lower concentrations of neutral detergent fiber (36.4 vs. 49.0%) and lignin (2.1 vs. 5.7%) than sorghum silage. Xylanase supplementation did not affect DM intake, milk yield, milk fat percentage and yield, milk protein percentage and yield, lactose percentage and yield, and 3.5% fat-corrected milk yield. Cows consuming corn silage-based diets consumed 13% more DM (28.8 vs. 25.5 kg/d) and produced 5% more milk (51.6 vs. 48.9 kg/d) than cows consuming sorghum silage-based diets. Milk from cows consuming sorghum silage-based diets had 16% greater fat concentrations (3.84 and 3.30%) than milk from cows consuming corn silage-based diets. This resulted in 8% greater fat yields (1.81 vs. 1.68 kg/d). Silage type did not affect milk protein and lactose concentrations. Xylanase supplementation did not affect nutrient digestibility. Cows consuming corn silage-based diets showed greater DM (77.3 vs. 73.5%), crude protein (78.0 vs. 72.4), and starch (99.2 vs. 96.5%) digestibilities than cows consuming sorghum silage-based diets. In conclusion, xylanase supplementation did not improve production performance when high-producing dairy cows were fed corn silage- or sorghum silage-based diets. In addition, production performance can be sustained by feeding sorghum silage in replacement of corn silage.  相似文献   

14.
This study was conducted to investigate the nutrient digestibility and lactation performance when alfalfa was replaced with rice straw or corn stover in the diet of lactating cows. Forty-five multiparous Holstein dairy cows were blocked based on days in milk (164 ± 24.8 d; mean ± standard deviation) and milk yield (29.7 ± 4.7 kg; mean ± standard deviation) and were randomly assigned to 1 of 3 treatments. Diets were isonitrogenous, with a forage-to-concentrate ratio of 45:55 [dry matter (DM) basis] and contained identical concentrate mixtures and 15% corn silage, with different forage sources (on a DM basis): 23% alfalfa hay and 7% Chinese wild rye hay (AH), 30% corn stover (CS), and 30% rice straw (RS). The experiment was conducted over a 14-wk period, with the first 2 wk for adaptation. The DM intake of the cows was not affected by forage source. Yield of milk, milk fat, protein, lactose, and total solids was higher in cows fed diets of AH than diets of RS or CS, with no difference between RS and CS. Contents of milk protein and total solids were higher in AH than in RS, with no difference between CS and AH or RS. Feed efficiency (milk yield/DM intake) was highest for cows fed AH, followed by RS and CS. Cows fed AH excreted more urinary purine derivatives, indicating that the microbial crude protein yield may be higher for the AH diet than for RS and CS, which may be attributed to the higher content of fermentable carbohydrates in AH than in RS and CS. Total-tract apparent digestibilities of all the nutrients were higher in cows fed the AH diet than those fed CS and RS. The concentration of rumen volatile fatty acids was higher in the AH diet than in CS or RS diets, with no difference between CS and RS diets. When the cereal straw was used to replace alfalfa as a main forage source for lactating cows, the shortage of fermented energy may have reduced the rumen microbial protein synthesis, resulting in lower milk protein yield, and lower nutrient digestibility may have restricted milk production.  相似文献   

15.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.  相似文献   

16.
The objective of this study was to investigate the effects of tallow and choice white grease (CWG) fed at 0, 2, and 4% of the diet dry matter (DM) on rumen fermentation and performance of dairy cows when corn silage is the sole forage source. Fifteen midlactation Holstein cows were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments were 0% fat (control), 2% tallow, 2% CWG, 4% tallow, and 4% CWG (DM basis). The forage:concentrate ratio was 50:50, and diets were formulated to contain 18% crude protein and 32% neutral detergent fiber (DM basis). Cows were allowed ad libitum consumption of diets fed twice daily as total mixed rations. Cows fed supplemental fat had lower DM intake and produced less milk and milk fat than cows fed the control diet. Feeding 4% fat reduced milk production and milk fat yield relative to feeding 2% fat. Treatments had little effect on the concentration of trans-octadecenoic acids in milk fat. Total trans fatty acids were poorly related to changes in milk fat percentage. Ruminal pH and total volatile fatty acids concentration were not affected by supplemental fat. The acetate:propionate ratio, NH3-N, and numbers of protozoa in the rumen were significantly decreased when fat was added to the diets. Source of dietary fat did not affect rumen parameters. There was no treatment effect on in situ corn silage DM and neutral detergent fiber disappearance. Including fat in corn silage-based diets had negative effects on milk production and rumen fermentation regardless of the source or level of supplemental fat.  相似文献   

17.
Four Holstein cows fitted with ruminal cannulas were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH3-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty acid) compared with feeding cows CS. Results from this study showed limited effects of MEO supplementation on nutrient utilization, ruminal fermentation, and milk performance when cows were fed diets containing either AS or CS as the sole forage source.  相似文献   

18.
This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance.  相似文献   

19.
Replacing dietary starch with sugar has been reported to improve production in dairy cows. Two sets of 24 Holstein cows averaging 41 kg/d of milk were fed a covariate diet, blocked by days in milk, and randomly assigned in 2 phases to 4 groups of 6 cows each. Cows were fed experimental diets containing [dry matter (DM) basis]: 39% alfalfa silage, 21% corn silage, 21% rolled high-moisture shelled corn, 9% soybean meal, 2% fat, 1% vitamin-mineral supplement, 7.5% supplemental nonstructural carbohydrate, 16.7% crude protein, and 30% neutral detergent fiber. Nonstructural carbohydrates added to the 4 diets were 1) 7.5% corn starch, 0% sucrose; 2) 5.0% starch, 2.5% sucrose; 3) 2.5% starch, 5.0% sucrose; or 4) 0% starch, 7.5% sucrose. Cows were fed the experimental diets for 8 wk. There were linear increases in DM intake and milk fat content and yield, and linear decreases in ruminal concentrations of ammonia and branched-chain volatile fatty acids, and urinary excretion of urea-N and total N, and urinary urea-N as a proportion of total N, as sucrose replaced corn starch in the diet. Despite these changes, there was no effect of diet on microbial protein formation, estimated from total purine flow at the omasum or purine derivative excretion in the urine, and there were linear decreases in both milk/DM intake and milk N/N-intake when sucrose replaced dietary starch. However, expressing efficiency as fat-corrected milk/DM intake or solids-corrected milk/DM intake indicated that there was no effect of sucrose addition on nutrient utilization. Replacing dietary starch with sucrose increased fat secretion, apparently via increased energy supply because of greater intake. Positive responses normally correlated with improved ruminal N efficiency that were altered by sucrose feeding were not associated with increased protein secretion in this trial.  相似文献   

20.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号