首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Field data were collected over a period of 2 yr by artificial insemination technicians for the purpose of evaluating differences among bulls in their fertility when synchronization and semen sorting were involved. First, main effects of synchronization and semen sorting were found to reduce bull fertility by 1.5 and 12.7%, respectively. Second, the interaction of both factors with bull fertility significantly enhanced the evaluation models. Differences between 2 sets of adjusted conception rates for synchronized and nonsynchronized services ranged from 0.5 to 2.9%, whereas differences between 2 sets of adjusted conception rates for sorted and conventional semen ranged from −1.8 to 15.2%. This implies that using conventional fertility models that ignore these effects may not be sufficiently accurate in situations where synchronization or semen sorting are involved. Accounting for synchronization and especially for semen sorting to evaluate bulls on their fertility and the production of separate sets of conception rates under each situation are essential.  相似文献   

2.
《Journal of dairy science》2021,104(9):10010-10019
Despite the importance of the quality of semen used in artificial insemination to the reproductive success of dairy herds, few studies have estimated the extent of genetic variability in semen quality traits. Even fewer studies have quantified the correlation between semen quality traits and male fertility. In this study, records of 100,058 ejaculates collected from 2,885 Nordic Holstein bulls were used to estimate genetic parameters for semen quality traits, including pre- and postcryopreservation semen concentration, sperm motility and viability, ejaculate volume, and number of doses per ejaculate. Additionally, summary data on nonreturn rate (NRR) obtained from insemination of some of the bulls (n = 2,142) to cows in different parities (heifers and parities 1–3 or more) were used to estimate correlations between the semen quality traits and service sire NRR. In the study, low to moderate heritability (0.06–0.45) was estimated for semen quality traits, indicating the possibility of improving these traits through selective breeding. The study also showed moderate to high genetic and phenotypic correlations between service sire NRR and some of the semen quality traits, including sperm viability pre- and postcryopreservation, motility postcryopreservation, and sperm concentration precryopreservation, indicating the predictive values of these traits for service sire NRR. The positive moderate to high genetic correlations between semen quality and service sire NRR traits also indicated that selection for semen quality traits might be favorable for improving service sire NRR.  相似文献   

3.
《Journal of dairy science》2021,104(10):11226-11241
In vitro methods of assessing bull semen quality in artificial insemination (AI) centers are unable to consistently detect individuals of lower fertility, and attempts to reliably predict bull fertility are still ongoing. This highlights the need to identify robust biomarkers that can be readily measured in a practical setting and used to improve current predictions of bull fertility. In this study, we comprehensively analyzed a range of functional, morphological, and intracellular attributes in cryopreserved spermatozoa from a selected cohort of Holstein Friesian AI bulls classified as having either high or low fertility (n = 10 of each fertility phenotype; difference of 11.4% in adjusted pregnancy rate between groups). Here, spermatozoa were assessed for motility and kinematic parameters, morphology, acrosome integrity, plasma membrane lipid packing, viability (or membrane integrity), superoxide production, and DNA integrity. In addition, spermatozoa were used for in vitro fertilization to evaluate their capacity for fertilization and successful embryo development. The information collected from these assessments was then used to phenotypically profile the 2 groups of bulls of divergent fertility status as well as to develop a model to predict bull fertility. According to the results, acrosome integrity and viability were the only sperm attributes that were significantly different between high- and low-fertility bulls. Interestingly, although spermatozoa from low-fertility bulls, on average, had reduced viability and acrosome integrity, this response varied considerably from bull to bull. Principal component analysis revealed a sperm phenotypic profile that represented a high proportion of ejaculates from low-fertility bulls. This was constructed based on the collective influence of several sperm attributes, including the presence of cytoplasmic droplets and superoxide production. Finally, using the combined results as a basis for modeling, we developed a linear model that was able to explain 47% of the variation in bull field fertility in addition to a logistic predictive model that had a 90% chance of distinguishing between fertility groups. Taken together, we conclude that viability and acrosome integrity could serve as fertility biomarkers in the field and, when used alongside other sperm attributes, may be useful in detecting low-fertility bulls. However, the variable nature of low-fertility bulls suggests that additional, in-depth characterization of spermatozoa at a molecular level is required to further understand the etiology of low fertility in dairy bulls.  相似文献   

4.
Genetic evaluations for milk, fat, and protein from 1995 through August 2003 for 17,987 Holstein bulls in active artificial insemination (AI) service were examined for changes to the November 2003 evaluation. Evaluations for active AI bulls at each of 31 evaluation dates showed mean declines to November 2003. No evidence was seen of a worsening situation over time. Bulls' early evaluations with active AI status showed much larger declines, but this overevaluation diminished and essentially disappeared after 3 yr. The bulls with first active AI evaluations since 1995 were the primary focus of the study. The influx of second-crop daughters did not appear to cause a decline in evaluations for these bulls, attesting to the successful modification to the genetic evaluation system by expanding the genetic variance of short records. Mean declines and the variation of those differences were generally similar by bull sampling organization. A change from active to inactive AI status was generally concurrent with a decline in predicted transmitting ability (PTA). Bulls coded as having standard AI sampling declined less than bulls coded as having other sampling, but the differences were much less than in previous reports. Larger increases in reliability were generally associated with greater declines in PTA, and the magnitude of these changes decreased over time (increasing evaluation number). Change in reliability underpredicted the variance of change in PTA, indicating that other important factors contribute or that the assumptions for the calculation of the expected change in PTA are not met. Declines in estimated merit over time are not sufficient to alter present genetic selection programs, but reasons for the declines continue to elude explanation.  相似文献   

5.
The objectives of this study were to infer genetic parameters for stillbirth (SB) and calving difficulty (CD) and to evaluate phenotypic and genetic change for these traits in the Norwegian Red breed. Stillbirth is recorded as a binary trait and calving difficulty has 3 categories: 1) easy calving, 2) slight problems, and 3) difficult calving. The overall mean frequency of SB in Norwegian Red was 3% at first calving and 1.5% for second and later calvings; mean frequency of the category “difficult calving” was 2 to 3% for heifers and 1% for cows at second and later calvings. Mean stillbirth rate has remained unchanged from 1978 to 2004. The proportion of the category “difficult calving” has not changed over the years, but the “slight problems” category increased from 4 to 7% for heifers and from 2 to 3% for cows. A total of 528,475 first-calving records were analyzed with a Bayesian bivariate sire-maternal grandsire threshold liability model. Posterior means of direct and maternal heritabilities were 0.13 and 0.09 for CD, and 0.07 and 0.08 for SB, respectively. Strong genetic correlations were found between direct SB and direct CD (0.79), and between maternal SB and maternal CD (0.62), whereas all genetic correlations between direct and maternal effects within or between traits were close to zero. These positive correlations are favorable in the sense that selection for one of the traits would result in a favorable selection response for the second trait. No genetic correlations between direct and maternal effects imply that bulls should be evaluated both as sire of the calf (direct) and sire of the cow (maternal). No genetic change for SB was found, and a slight genetic improvement for CD was detected.  相似文献   

6.
Associations between clinical mastitis (CM) and nonreturn rate within 56 d after first insemination (NR56) were examined in Norwegian Red (NRF) cows. Records on absence or presence of CM within each of the intervals, −30 to 30, 31 to 150, and 151 to 300 d after first calving, and records on NR56 for 620,492 first-lactation daughters of 3,064 NRF sires were analyzed with a Bayesian multivariate threshold liability model. Point estimates of genetic correlations between NR56 and the 3 CM traits were between −0.05 and −0.02. Residual correlations were close to zero, and correlations between herd-5-yr effects on NR56 and CM in the 3 lactation intervals ranged from −0.15 to −0.17. It appears that CM and NR56 in first lactation are independent traits.  相似文献   

7.
The aim of this study was genetic analyses of claw health in Norwegian Red. Claw health status at claw trimming has, since 2004, been recorded in the Norwegian Dairy Herd Recording System. The claw trimmer records whether the cow has normal (healthy) claws or if one or more claw disorders are present. Nine defined claw disorders were recorded: corkscrew claw (CSC), heel horn erosion (HH), dermatitis (DE), sole ulcer (SU), white line disorder (WLD), hemorrhage of sole and white line (HSW), interdigital phlegmon (IDP), lameness (LAME), and acute trauma (AT). Data from 2004 to 2011, with a total of 204,892 claw health records, were analyzed. The disorders were defined as binary traits with 1 record per cow per lactation. Further, 3 groups of claw disorders were analyzed: infectious claw disorders (INFEC, containing HH, DE, and IDP); laminitis-related claw disorders (LAMIN, containing SU, WLD, and HSW); and overall claw disorder. The 9 single traits and the 3 groups were analyzed using univariate threshold sire models. Multivariate threshold models were performed for the 5 most frequent single traits (CSC, HH, DE, SU, and WLD) and for CSC together with the grouped traits INFEC and LAMIN. Posterior mean of heritability of liability ranged from 0.04 to 0.23, where CSC had the highest heritability. The posterior standard deviations of heritability were low, between 0.01 and 0.03, except for IDP (0.06). Heritability of liability to INFEC and LAMIN were both 0.11 and for overall claw disorders, the heritability was 0.13. Posterior means of the genetic correlation among the 5 claw disorders varied between 0.02 and 0.79, and the genetic correlations between DE and HH (0.65) and between WLD and SU (0.79) were highest. Genetic correlation between INFEC and CSC was close to zero (0.06), between LAMIN and CSC it was 0.31, and between LAMIN and INFEC it was 0.24. The results show that claw disorders are sufficiently heritable for genetic evaluation and inclusion in the breeding scheme. At present, data are scarce with few recorded daughters per sire. Claw trimming records from more herds would therefore be beneficial for routine genetic evaluation of claw health.  相似文献   

8.
The objectives of this study were to estimate genetic parameters and evaluate models for genetic evaluation of days from calving to first insemination (ICF) and days open (DO). Data including 509,512 first-parity records of Danish Holstein cows were analyzed using 5 alternative sire models that dealt with censored records in different ways: 1) a conventional linear model (LM) in which a penalty of 21 d was added to censored records; 2) a bivariate threshold-linear model (TLM), which included a threshold model for censoring status (0, 1) of the observations, and a linear model for ICF or DO without any penalty on censored records; 3) a right-censored linear model (CLM); 4) a Weibull proportional hazard model (SMW); and 5) a Cox proportional hazard model (SMC) constructed with piecewise constant baseline hazard function. The variance components for ICF and DO estimated from LM and TLM were similar, whereas CLM gave higher estimates of both additive genetic and residual components. Estimates of heritability from models LM, TLM, and CLM were very similar (0.102 to 0.108 for ICF, and 0.066 to 0.069 for DO). Heritabilities estimated using model SMW were 0.213 for ICF and 0.121 for DO in logarithmic scale. Using SMC, the estimates of heritability, defined as the log-hazard proportional factor for ICF and DO, were 0.013 and 0.009, respectively. Correlations between predicted transmitting ability from different models for sires with records from at least 20 daughters were far from unity, indicating that different models could lead to different rankings. The largest reranking was found between SMW and SMC, whereas negligible reranking was found among LM, TLM, and CLM. The 5 models were evaluated by comparing correlations between predicted transmitting ability from different data sets (the whole data set and 2 subsets, each containing half of the whole data set), for sires with records from at least 20 daughters, and χ2 statistics based on predicted and observed daughter frequencies using a cross validation. The model comparisons showed that SMC had the best performance in predicting breeding values of the 2 traits. No significant difference was found among models LM, TLM, and CLM. The SMW model had a relatively poor performance, probably because the data are far from a Weibull distribution. The results from the present study suggest that SMC could be a good alternative for predicting breeding values of ICF and DO in the Danish Holstein population.  相似文献   

9.
Heritability of and genetic correlations among silent heat (SH), cystic ovaries (CO), metritis (MET), and retained placenta (RP) were inferred. These traits were chosen because they are the 4 most frequent fertility-related diseases and disorders among first-lactation cows in Norway. Records of 503,683 first-lactation daughters of 1,058 Norwegian Red sires with first calving from 2000 through 2006 were analyzed with a 4-variate threshold sire model. Presence or absence of each of the 4 diseases was scored as 1 or 0 based on whether or not the cow had at least 1 veterinary treatment for the disease. The mean frequency was 3.1% for SH, 0.9% for MET, 0.5% for CO, and 1.5% for RP. The model for liability had effects of age at calving and of month-year of calving, herd, sire of the cow, and a residual. Posterior mean (SD) of heritability of liability was 0.06 (0.01) for SH, 0.03 (0.01) for MET, 0.07 (0.01) for CO, and 0.06 (0.01) for RP. The genetic correlation between MET and RP was strong, with posterior mean (SD) 0.64 (0.10). A negative genetic correlation (−0.26) was found between RP and CO. The posterior distributions of the other genetic correlations included zero with high density, and could not be considered different from zero. The frequency of fertility-related diseases and disorders is very low in the Norwegian Red population at present, so there is limited scope for genetic improvement. However, this study indicates that reasonably precise genetic evaluation of sires is feasible for these traits given information from large daughter groups.  相似文献   

10.
The number of dairy cows milked in automatic milking systems (AMS) is steadily increasing in Norway. Capacity and efficiency of AMS are highly dependent on the individual cow's milking efficiency, such as milking speed and occupation time in the milking robot. Cows meet new challenges in herds utilizing AMS. Consequently, new or revised traits may be needed for genetic evaluation of dairy cattle. The AMS records relevant information on an individual cow basis. The aims of this study were to estimate genetic parameters of new automatically recorded milkability and temperament traits. Data from 77 commercial herds with Norwegian Red dairy cattle were analyzed by mixed linear animal models. The final data set contained 1,012,912 daily records from 4,883 cows in first to ninth lactation. For variance component estimation, univariate and bivariate models were used. Daily records of box time (BT), average flow rate (FR), kilograms of milk per minute of box time (MEF), handling time (HT), log-transformed HT, milking frequency, and milking interval were analyzed with repeatability models. Among these traits, FR, BT, and MEF showed the highest heritabilities of 0.48, 0.27, and 0.22, respectively, whereas heritability of log-transformed HT, HT, milking frequency, and milking interval was low (0.02–0.07). Unsuccessful milkings expressed as rejected milkings, incomplete milkings (IM), milkings with kick-offs (KO), and teat not found also showed low heritabilities (0.002–0.06). Due to low frequency, KO, rejected milkings, IM, and teat not found were also analyzed as proportions per lactation, which resulted in slightly higher heritability estimates. Genetic correlations were favorable and intermediate to strong between BT, HT, MEF, and FR with absolute values above 0.50. Intermediate and favorable correlations were found for IM and KO with BT, HT, MEF, and FR. Cow milkability in AMS can be improved by selection for reduced number of unsuccessful milkings, faster FR, increased MEF, and shorter BT and HT. Our results confirm that automatically recorded data on milkability and temperament can be valuable sources of information for routine genetic evaluations and that milking efficiency in AMS can be genetically improved.  相似文献   

11.
A bivariate threshold-linear (TL) and a bivariate linear-linear (LL) model were assessed for the genetic analysis of 56-d nonreturn (NR56) and interval from calving to first insemination (CFI) in first-lactation Norwegian Red (former Norwegian Dairy Cattle) (NRF). Three different datasets were used to infer genetic parameters and to predict transmitting abilities for NRF sires. Mean progeny group sizes were 147.8, 102.7, and 56.5 daughters, and the corresponding number of sires were 746, 743, and 742 in the 3 datasets. Otherwise, the structures of the 3 datasets were similar. When the TL model was used, heritability of liability to NR56 was 2.8% in the 2 larger datasets and 3.8% in the smallest dataset. In the LL model, the heritability of NR56 in the largest dataset and in the 2 smaller datasets was 1.2 and 0.9%, respectively. For CFI, the heritability was similar in TL and LL models, ranging from 2.4 to 2.7%. The small heritability of the 2 reproductive traits implies that most of the variation is environmental and that large progeny groups are required to get accurate sire PTA. The point estimates of the genetic correlation between NR56 and CFI were near zero in both models. The 2 bivariate models were compared in terms of predictive ability using logistic regression and a χ2 statistic based on differences between observed and predicted outcomes for NR56 in a separate dataset. Comparison was also with respect to ranking of sires and correlations between sire posterior means (TL model) and PTA (LL model). We found very small differences in ability to predict NR56 between the 2 bivariate models, regardless of the dataset used. Correlations between sire posterior means (TL) and sire PTA (LL) and rank correlations between sire evaluations were all >0.98 in the 3 datasets. At present, the LL model is preferred for sire evaluations of NR56 and CFI in NRF. This is because the LL model is less computationally demanding and more robust with respect to the structure of the data than TL.  相似文献   

12.
First-lactation records on 836,452 daughters of 3,064 Norwegian Red sires were used to examine associations between culling in first lactation and 305-d protein yield, susceptibility to clinical mastitis, lactation mean somatic cell score (SCS), nonreturn rate within 56 d in heifers and primiparous cows, and interval from calving to first insemination. A Bayesian multivariate threshold-linear model was used for analysis. Posterior mean of heritability of liability to culling of primiparous cows was 0.04. The posterior means of the genetic correlations between culling and the other traits were −0.41 to 305-d protein yield, 0.20 to lactation mean SCS, 0.36 to clinical mastitis, 0.15 to interval from calving to first insemination, −0.11 to 56-d nonreturn as heifer, and −0.04 to 56-d nonreturn as primiparous cow. As much as 66% of the genetic variation in culling was explained by genetic variation in protein yield, clinical mastitis, interval of calving to first insemination, and 56-d nonreturn in heifers, whereas contribution from the SCS and 56-d nonreturn as primiparous cow was negligible, after taking the other traits into account. This implies that for breeds selected for a broad breeding goal, including functional traits such as health and fertility, most of the genetic variation in culling will probably be covered by other traits in the breeding goal. However, in populations where data on health and fertility is scarce or not available at all, selection against early culling may be useful in indirect selection for improved health and fertility. Regression of average sire posterior mean on birth-year of the sire indicate a genetic change equivalent to an annual decrease of the probability of culling in first-lactation Norwegian Red cattle by 0.2 percentage units. This genetic improvement is most likely a result of simultaneous selection for improved milk yield, health, and fertility over the last decades.  相似文献   

13.
The objectives of this study were to estimate genetic parameters for fertility of Brown Swiss cattle, considering reproductive measures in different parities as different traits, and to estimate relationships between production traits of first lactation and fertility of heifers and first-parity and second-parity cows. Reproductive indicators were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception rate at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield (pMY), lactation milk yield, and lactation length (LL). Data included 37,546 records on heifers, and 24,098 and 15,653 records on first- and second-parity cows, respectively. Cows were reared in 2,035 herds, calved from 1999 to 2007, and were progeny of 527 AI bulls. Gibbs sampling was implemented to obtain (co)variance components using both univariate and bivariate threshold and censored linear sire models. Estimates of heritability for reproductive traits in heifers (0.016 to 0.026) were lower than those in first-parity (0.017 to 0.142) and second-parity (0.026 to 0.115) cows. Genetic correlations for fertility in first- and second-parity cows were very high (>0.920), whereas those between heifers and lactating cows were moderate (0.348 to 0.709). The latter result indicates that fertility in heifers is a different trait than fertility in lactating cows, and hence it cannot be used as robust indicator of cow fertility. Heifer fertility was not related to production traits in first lactation (genetic correlations between −0.215 and 0.251). Peak milk yield exerted a moderate and unfavorable effect on the interval from parturition to first service (genetic correlations of 0.414 and 0.353 after first and second calving, respectively), and a low and unfavorable effect on other fertility traits (genetic correlations between −0.281 and 0.295). Infertility after first calving caused a strong elongation of the lactation, and LL was negatively correlated with fertility of cows after second calving, so that LL can itself be regarded as a measure of fertility. Lactation milk yield depends on both pMY and LL, and, as such, is a cause and consequence of (in)fertility.  相似文献   

14.
The aim of this study was to estimate genetic parameters for fertility and production traits in the Brown Swiss population reared in the Alps (Bolzano-Bozen province, Italy). Fertility indicators were interval from parturition to first service, interval from first service to conception (iFC), and interval from parturition to conception, either expressed as days and as number of potential 21-d estrus cycles (cPF, cFC, and cPC, respectively); number of inseminations to conception; conception rate at first service; and non-return rate at 56 d post-first service. Production traits were peak milk yield, lactation milk yield, lactation length, average lactation protein percentage, and average lactation fat percentage. Data included 71,556 lactations (parities 1 to 9) from 29,582 cows reared in 1,835 herds. Animals calved from 1999 to 2007 and were progeny of 491 artificial insemination bulls. Gibbs sampling and Metropolis algorithms were implemented to obtain (co)variance components using both univariate and bivariate censored threshold and linear sire models. All of the analyses accounted for parity and year-month of calving as fixed effects, and herd, permanent environmental cow, additive genetic sire, and residual as random effects. Heritability estimates for fertility traits ranged from 0.030 (iFC) to 0.071 (cPC). Strong genetic correlations were estimated between interval from parturition to first service and cPF (0.97), and interval from parturition to conception and cPC (0.96). The estimate of heritability for cFC (0.055) was approximately double compared with iFC (0.030), suggesting that measuring the elapsed time between first service and conception in days or potential cycles is not equivalent; this was also confirmed by the genetic correlation between iFC and cFC, which was strong (0.85), but more distant from unity than the other 2 pairs of fertility traits. Genetic correlations between number of inseminations to conception, conception rate at first service, non-return rate at 56 d post-first service, cPF, cFC, and cPC ranged from 0.07 to 0.82 as absolute value. Fertility was unfavorably correlated with production; estimates ranged from −0.26 (cPC with protein percentage) to 0.76 (cPC with lactation length), confirming the genetic antagonism between reproductive efficiency and milk production. Although heritability for fertility is low, the contemporary inclusion of several reproductive traits in a merit index would help to improve performance of dairy cows.  相似文献   

15.
The outcome of an insemination depends on male and female fertility. Nevertheless, few studies have incorporated genetic evaluation of these 2 traits jointly. The aim of this work was to compare genetic parameter estimates of male and female fertility defined as success or failure to artificial insemination (AI), using 8 different models. The first 2 models were simple repeatability models studying fertility of one sex and ignoring any information of the other. Models 3 and 4 took into account the information of the other sex by the inclusion of its random permanent environmental effect, whereas models 5 and 6 included fixed effects of the other sex. Models 7 and 8 were joint genetic evaluation models of male and female fertility ignoring or considering genetic correlation. Data were composed of 147,018 AI of the Manech Tête Rousse breed recorded from 2000 to 2004 corresponding to 79,352 ewes and 963 rams. The pedigree file included 120,989 individuals. Variance component estimates from the different models were quite similar; heritabilities varied from 0.050 to 0.053 for female fertility and were near 0.003 for male fertility. Correlations among estimated breeding values in the same sex using different models were higher than 0.99. The genetic correlation between male and female fertility was not significantly different from 0. These results show that for French dairy sheep with extensive use of AI, estimation of breeding values for male and female fertility might be implemented with quite simple models.  相似文献   

16.
The objective of this study was to quantify the genetic variation in normal and atypical progesterone profiles and investigate if this information could be useful in an improved genetic evaluation for fertility for dairy cows. The phenotypes derived from normal profiles included cycle length traits, including commencement of luteal activity (C-LA), interluteal interval, luteal phase length. and interovulatory interval. In total, 44,977 progesterone test-day records were available from 1,612 lactations on 1,122 primiparous and multiparous Holstein-Friesian cows from Ireland, the Netherlands, Sweden, and the United Kingdom. The atypical progesterone profiles studied were delayed cyclicity, prolonged luteal phase, and cessation of cyclicity. Variance components for the atypical progesterone profiles were estimated using a sire linear mixed model, whereas an animal linear mixed model was used to estimate variance components for the cycle length traits. Heritability was moderate for delayed cyclicity (0.24 ± 0.05) and C-LA (0.18 ± 0.04) but low for prolonged luteal phase (0.02 ± 0.04), luteal phase length (0.08 ± 0.05), interluteal interval (0.08 ± 0.14), and interovulatory interval (0.03 ± 0.04). No genetic variation was detected for cessation of cyclicity. Commencement of luteal activity, luteal phase length, and interovulatory interval were moderately to strongly genetically correlated with days from calving to first service (0.35 ± 0.12, 0.25 ± 0.14, and 0.76 ± 0.24, respectively). Delayed cyclicity and C-LA are traits that can be important in both genetic evaluations and management of fertility to detect (earlier) cows at risk of compromised fertility. Delayed cyclicity and C-LA were both strongly genetically correlated with milk yield in early lactation (0.57 ± 0.14 and 0.45 ± 0.09, respectively), which may imply deterioration in these traits with selection for greater milk yield without cognizance of other traits.  相似文献   

17.
Genetic and phenotypic parameters for Mexican Holstein cows were estimated for first- to third-parity cows with records from 1998 to 2003 (n = 2,971-15,927) for 305-d mature equivalent milk production (MEM), fat production (MEF), and protein production (MEP), somatic cell score (SCS), subsequent calving interval (CAI), and age at first calving (AFC). Genetic parameters were obtained by average information matrix-REML methodology using 6-trait (first-parity data) and 5-trait (second- and third-parity data) animal models. Heritability estimates for production traits were between 0.17 ± 0.02 and 0.23 ± 0.02 for first- and second-parity cows and between 0.12 ± 0.03 and 0.13 ± 0.03 for third-parity cows. Heritability estimates for SCS were similar for all parities (0.10 ± 0.02 to 0.11 ± 0.03). For CAI, estimates of heritability were 0.01 ± 0.05 for third-parity cows and 0.02 ± 0.02 for second-parity cows. The heritability for AFC was moderate (0.28 ± 0.03). No unfavorable estimates of correlations were found among MEM, MEF, MEP, CAI, and SCS. Estimates of environmental and phenotypic correlations were large and positive among production traits; favorable between SCS and CAI; slightly favorable between MEM, MEF, and MEP and SCS, between AFC and SCS, and between SCS and CAI; and small but unfavorable between production traits and CAI. Estimates of genetic variation and heritability indicate that selection would result in genetic improvement of production traits, AFC, and SCS. Estimates of both heritability and genetic variation for CAI were small, which indicates that genetic improvement would be difficult.  相似文献   

18.
The primary aim of this study was to estimate variance components for traits related to embryo transfer (ET) by applying generalized linear mixed models (GLMM) for different distributions of traits (normal, binomial, and Poisson) in a synergistic context. Synergistic models were originally developed for traits affected by several genotypes, denoted as maternal, paternal, and direct effects. In the case of ET, the number of flushed ova (FO) only depends on a donor's maternal genetic effect, whereas paternal fertility must be considered for other embryo survival traits, such as the number of transferable embryos (TE), the number of degenerated embryos (DE), the number of unfertilized oocytes (UO), and the percentage of transferable embryos (PTE). Data for these traits were obtained from 4,196 flushes of 2,489 Holstein cows within 4 regions of northwest Germany from January 1998 through October 2004. Estimates of maternal heritability were 0.231 for FO, 0.096 for TE, 0.021 for DE, 0.135 for UO, and 0.099 for PTE, whereas the relative genetic impact of the paternal component was near zero. Estimates of the genetic correlations between the maternal and the paternal component were slightly negative, indicating a genetic antagonism. For the analysis of pregnancy after ET, 8,239 transfers to 6,819 different Holstein-Friesian recipients were considered by applying threshold methodology. The direct heritability for pregnancy in the recipient after ET was 0.056. The relative genetic impact of maternal and paternal components on pregnancy of recipients describing a donor's and a sire's ability to produce viable embryos was below 1%. The genetic correlations of the direct effect of the recipient with the sire of embryos (paternal effect) and the donor cow (maternal effect) for pregnancy after ET were −0.32 and −0.14, respectively. With the exception of FO and PTE (−0.17), estimates of genetic correlations among traits for the maternal site were distinctly positive, especially between FO and TE (0.74). Based on this high genetic correlation and due to the higher heritability for FO, indirect selection on FO will increase selection response in TE by about 22% compared with direct selection on TE. The negative genetic correlation of −0.27 between TE and lactation milk yield indicates the need for development of an index for bull dams in multiple ovulation and embryo transfer (MOET) breeding schemes combining production as well as traits related to ET.  相似文献   

19.
A data set including 57,868 records for calf birth weight (CABW) and 9,462 records for weight at first insemination (IBW) were used for the estimation of direct and maternal genetic effects in Holstein Friesian dairy cattle. Furthermore, CABW and IBW were correlated with test-day production records and health traits in first-lactation cows, and with nonreturn rates in heifers. Health traits considered overall disease categories from the International Committee for Animal Recording diagnosis key, including the general disease status, diarrhea, respiratory diseases, mastitis, claw disorders, female fertility disorders, and metabolic disorders. For single-trait measurements of CABW and IBW, animal models with maternal genetic effects were applied. The direct heritability was 0.47 for CABW and 0.20 for IBW, and the direct genetic correlation between CABW and IBW was 0.31. A moderate maternal heritability (0.19) was identified for CABW, but the maternal genetic effect was close to zero for IBW. The correlation between direct and maternal genetic effects was antagonistic for CABW (?0.39) and for IBW (?0.24). In bivariate animal models, only weak genetic and phenotypic correlations were identified between CABW and IBW with either test-day production or health traits in early lactation. Apart from metabolic disorders, there was a general tendency for increasing disease susceptibilities with increasing CABW. The genetic correlation between IBW and nonreturn rates in heifers after 56 d and after 90 d was slightly positive (0.18), but close to zero when correlating nonreturn rates with CABW. For the longitudinal BW structure from birth to the age of 24 mo, random regression models with the time-dependent covariate “age in months” were applied. Evaluation criteria (Bayesian information criterion and residual variances) suggested Legendre polynomials of order 3 to modeling the longitudinal body weight (BW) structure. Direct heritabilities around birth and insemination dates were slightly larger than estimates for CABW and IBW from the single-trait models, but maternal heritabilities were exactly the same from both models. Genetic correlations between BW were close to 1 for neighboring age classes, but decreased with increasing time spans. The genetic correlation between BW at d 0 (birth date) and at 24 mo was even negative (?0.20). Random regression model estimates confirmed the antagonistic relationship between direct and maternal genetic effects, especially during calfhood. This study based on a large data set in dairy cattle confirmed genetic parameters and (co)variance components for BW as identified in beef cattle populations. However, BW records from an early stage of life were inappropriate early predictors for dairy cow health and productivity.  相似文献   

20.
Age at first insemination, days from calving to first insemination, number of services, first-service nonreturn rate to 56 d, days from first service to conception, calving ease, stillbirth, gestation length, and calf size of Canadian Holstein cows were jointly analyzed in a linear multiple-trait model. Traits covered a wide spectrum of aspects related to reproductive performance of dairy cows. Other frequently used fertility characteristics, like days open or calving intervals, could easily be derived from the analyzed traits. Data included 94,250 records in parities 1 to 6 on 53,158 cows from Ontario and Quebec, born in the years 1997 to 2002. Reproductive characteristics of heifers and cows were treated as different but genetically correlated traits that gave 16 total traits in the analysis. Repeated records for later parities were modeled with permanent environmental effects. Direct and maternal genetic effects were included in linear models for traits related to calving performance. Bayesian methods with Gibbs sampling were used to estimate covariance components of the model and respective genetic parameters. Estimates of heritabilities for fertility traits were low, from 3% for nonreturn rate in heifers to 13% for age at first service. Interval traits had higher heritabilities than binary or categorical traits. Service sire, sire of calf, and artificial insemination technician were important (relative to additive genetic) sources of variation for nonreturn rate and traits related to calving performance. Fertility traits in heifers and older cows were not the same genetically (genetic correlations in general were smaller than 0.9). Genetic correlations (both direct and maternal) among traits indicated that different traits measured different aspects of reproductive performance of a dairy cow. These traits could be used jointly in a fertility index to allow for selection for better fertility of dairy cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号