首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To fully automate the sample introduction step for nanoscale microcapillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses, 75 microm i.d. x 14 cm capillary columns were interfaced with a commercial autosampler instrument using a novel procedure which allowed dilute peptide samples to be transferred from the AS loop injector to the nanoscale column at flow rates up to 5 microL min(-1). On-column enrichment and desalting was demonstrated for large sample volumes (>40 microL) by constructing a vent 2 cm after the entrance to the packed bed of 5-microm ODS-AQ modified silica. Salts and nonretained solutes were removed via the vent, which allowed for column washing independent of the continuation of the bed into the electrospray source. Separations of test peptide mixtures demonstrated 50-nL elution peak volumes with low- to subfemtomole detection levels. In addition, a highly complex peptide mixture (outer membrane preparation from Psuedemonas aeruginosa) was efficiently separated with more than 100 proteins identified from a single reversed-phase LC-MS/MS analysis. Finally, the vented column (V-column) was utilized for on-line separations in a multidimensional chromatography/tandem MS experiment where large numbers of strong cation exchange chromatography fractions from a trypsinized yeast lysate were desalted, concentrated, and analyzed in a completely automated fashion. The procedures for constructing and using a V-column require minimal changes in current methods and equipment for nano-LC-MS analyses using columns of 100-microm diameter and smaller.  相似文献   

2.
A new solid-phase extraction (SPE) device in the 96-well format (SPE Card) has been employed for automated off-line sample preparation of low-volume urine samples. On-line automated analyte elution via SPE and direct quantitation by micro ion spray mass spectrometry is reported. This sample preparation device has the format of a microtiter plate and is molded in a plastic frame which houses 96 separate sandwiched 3M Empore sorbents (0.5-mm-thickness, 8-microm particles) covered on both sides by a microfiber support material. Ninety-six discrete SPE zones, each 7 mm in diameter, are imbedded into the sheet in the conventional 9-mm pitch (spacing) of a 96-well microtiter plate. In this study one-quarter of an SPE Card (24 individual zones) was used merely as a convenience. After automated off-line interference elution of applied human urine from 24 samples, a section of SPE Card is mounted vertically on a computer-controlled X, Y, Z positioner in front of a micro ion spray direct sampling tube equipped with a beveled tip. The beveled tip of this needle robotically penetrates each SPE elution zone (sorbent disk) or stationary phase in a serial fashion. The eluted analytes are sequentially transferred directly to a microelectrosprayer to obtain tandem mass spectrometric (MS/MS) analysis. This strategy precludes any HPLC separation and the associated method development. The quantitative determination of Ritalin (methylphenidate) from fortified human urine samples is demonstrated. A trideuterated internal standard of methylphenidate was used to obtain ion current response ratios between the parent drug and the internal standard. Human control urine samples fortified from 6.6 to 3300 ng/mL (normal therapeutic levels have been determined in other studies to be between 50 and 100 ng/mL urine) were analyzed and a linear calibration curve was obtained with a correlation coefficient of 0.9999, where the precision of the quality control (QC) samples ranged from 9.6% at the 24 ng/mL QC level to 1.2% at the 3000 ng/mL QC level, and the accuracy for the four levels of QC samples ranged from 98.1% to 100.3%. The QC samples were prepared at four concentrations which included 24, 240, 1200, and 3000 ng/mL, respectively. The run time per sample in this work was 1.5 min not including the sample preparation time.  相似文献   

3.
High throughput-solid phase extraction tandem mass spectrometry (HT-SPE/MS) is a fully automated system that integrates sample preparation using ultrafast online solid phase extraction (SPE) with mass spectrometry detection. HT-SPE/MS is capable of conducting analysis at a speed of 5-10 s per sample, which is several fold faster than chromatographically based liquid chromatography-mass spectrometry (LC-MS). Its existing applications mostly involve in vitro studies such as high-throughput therapeutic target screening, CYP450 inhibition, and transporter evaluations. In the current work, the feasibility of utilizing HT-SPE/MS for analysis of in vivo preclinical and clinical samples was evaluated for the first time. Critical bioanalytical parameters, such as ionization suppression and carry-over, were systematically investigated for structurally diverse compounds using generic SPE operating conditions. Quantitation data obtained from HT-SPE/MS was compared with those from LC-MS analysis to evaluate its performance. Ionization suppression was prevalent for the test compounds, but it could be effectively managed by using a stable isotope labeled internal standard (IS). A structural analogue IS also generated data comparable to the LC-MS system for a test compound, indicating matrix effects were also compensated for to some extent. Carry-over was found to be minimal for some compounds and variable for others and could generally be overcome by inserting matrix blanks without sacrificing assay efficiency due to the ultrafast analysis speed. Quantitation data for test compounds obtained from HT-SPE/MS were found to correlate well with those from conventional LC-MS. Comparable accuracy, precision, linearity, and sensitivity were achieved with analysis speeds 20-30-fold higher. The presence of a stable metabolite in the samples showed no impact on parent quantitation for a test compound. In comparison, labile metabolites could potentially cause overestimation of the parent concentration if the ion source conditions are not optimized to minimize in-source breakdown. However, with the use of conditions that minimized in-source conversion, accurate measurement of the parent was achieved. Overall, HT-SPE/MS exhibited significant potential for high-throughput in vivo bioanalysis.  相似文献   

4.
We developed a method using isotope dilution on-line solid-phase extraction (SPE) coupled to high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination in urine of nine environmental phenolic compounds: Bisphenol A; 4-tert-octylphenol; o-phenylphenol; 2,4-dichlorophenol; 2,5-dichlorophenol; 2,4,5-trichlorophenol; 2,4,6-trichlorophenol; benzophenone-3 (2-hydroxy-4-metoxybenzophenone); and triclosan (2,4,4'-trichloro-2'-hydroxyphenyl ether). A unique fully automated column-switching system, constructed using 1 autosampler, 2 HPLC pumps, and a 10-port switching valve, was designed to allow for concurrent SPE-HPLC operation with peak focusing. The phenols present in 100 microL of urine were retained and concentrated on a C18 reversed-phase size-exclusion SPE column. Then, the phenols were "back-eluted" from the SPE column and diluted through a mixing Tee before being separated from other urine matrix components using a pair of monolithic HPLC columns. The phenols were detected by negative ion-atmospheric pressure chemical ionization-MS/MS. The efficient preconcentration of the phenols by the SPE column, analyte peak focusing by the dilution, and minimal ion suppression in the LC/MS interface by the buffer-free mobile phases resulted in limits of detection as low as 0.1-0.4 ng/mL for most analytes. The method was validated on spiked pooled urine samples and on urine samples from 30 adults with no known occupational exposure to environmental phenols. The method can be used for quick and accurate analysis of large numbers of samples in epidemiologic studies for assessing the prevalence of human exposure to environmental phenols.  相似文献   

5.
We developed an analytical method using off-line solid-phase extraction (SPE) coupled with on-line SPE and isotope-dilution high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine the concentrations of phthalate metabolites in human meconium and in semen. First, we used off-line SPE to remove interfering proteins and other biomolecules from the samples. Then, we preconcentrated the phthalate metabolites in the extract using on-line SPE before measuring them by HPLC-MS/MS. For most of the analytes, the limits of detection ranged between 0.2 and 0.7 ng/g for meconium and between 0.3 and 0.7 ng/mL for semen. The recovery after off-line SPE varied for most analytes between 65 and 99% at concentrations ranging from 3.0 to 30.0 ng/mL in semen and between 67 and 103% at concentrations ranging from 2.0 to 10.0 ng/mL in meconium. Precision measured by the relative standard deviation ranged from 3.2 to 19.1% for intraday and from 3.9 to 18.6% for interday. We validated this novel approach--which is applicable to other biological matrixes, including serum and breast milk--on spiked samples and on five meconium samples and one pooled semen sample from people with no known occupational exposure to phthalates.  相似文献   

6.
We have developed an on-line solid-phase extraction (SPE) method coupled to high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) for measuring trace levels of 18 perfluorinated chemicals (3 perfluorosulfonates, 8 perfluorocarboxylates, 7 perfluorosulfonamides) in serum. Without protein precipitation, only dilution with 0.1 M formic acid, one aliquot of 100 microL of serum was injected into a commercial column switching system that allowed for concurrent SPE and HPLC-MS/MS acquisition. First, the analytes were concentrated on a C18 SPE column. Then, this column was placed automatically in front of a C8 analytic HPLC column for chromatographic separation of the analytes. Detection and quantification were done using negative-ion TurboIonSpray ionization, a variant of electrospray ionization, MS/MS. Excellent recovery was achieved for all analytes including the volatile sulfonamide derivatives that could not be determined before using traditional off-line SPE methods. The high throughput and low limits of detection (0.05-0.8 ng/mL) using a small sample volume (100 microL of serum) and isotope dilution quantification make this method suitable for large-scale epidemiologic studies.  相似文献   

7.
A parallel four-channel LC-MS/MS system for quantitative high-throughput in vitro screens is described. The system comprises four pumps, a four-valve autosampler equipped with a nine-port stream selector valve, and a triple quadrupole mass spectrometer. Staggered injections across the sample list are performed by four injector valves onto separate columns in such a manner that the chromatographic window of interest is always eluting from one of the columns into the mass spectrometer. To demonstrate the applicability of the system, three different compounds (verapamil, propanolol, dextromethorphan) were analyzed. The results showed that the sample throughput could be increased more than three times in comparison with a conventional single-column LC-MS/MS system. Validation results for the three compounds showed an accuracy of 85.0-108%, a precision (given as relative standard deviation) of 2.60-10.7%, and a carryover of less than 0.1%.  相似文献   

8.
Bioanalytical methods based on automated solid-phase extraction (SPE) and high-performance liquid chromatography with electrospray tandem mass spectrometry (LC-MS-MS) have been developed and utilized for the determination of MMP inhibitors in plasma and cartilage tissues. The SPE methods were automated using a 96-well extraction plate and a 96-channel programmable liquid-handling workstation. The LC-MS-MS methods were developed using a rapid gradient LC separation, followed by sample introduction through an ionspray interface in the positive ion mode and tandem mass spectrometric detection with selected reaction monitoring. In the optimized SPE methods, crude plasma or ground cartilage supernatant samples were loaded onto an SPE plate to remove proteins and other interfering components in the matrixes to render relatively clean extracts for LC-MS-MS analysis. Compared to the simple plasma protein precipitation method, the automated SPE method afforded significant time-saving in sample preparation and improved sensitivity in MS detection. The methods were validated and successfully applied to the analysis of protease inhibitors in plasma and cartilage tissues.  相似文献   

9.
An improved liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for the determination of tobacco specific nitrosamines (TSNA). It utilizes four stable isotope-labeled internal standards instead of two as reported by others. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision if only one or two of the internal standards are used, especially for complex sample matrixes and when no sample cleanup steps are performed as in this study. In addition, two ion-transition pairs (instead of one) are used for each analyte for the confirmation and quantification, further enhancing the method's accuracy and robustness. These improvements have led to a new LC-MS/MS method that is faster, more sensitive, and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods. The linear range of the method was from 0.2 to 250 ng/mL with a limit of detection of each TSNA varied from 0.027 to 0.049 ng/mL. Good correlations between the results obtained by the new method and the traditional method were observed for the samples studied.  相似文献   

10.
Electrospray ionization mass spectrometry is a valuable tool in the identification and quantification of drug metabolites in biological fluids. However, there are many instances where matrix components present in these fluids interfere with analyte detection and prevent the acquisition of accurate or complete results. In some instances, the matrix can suppress ionization to such an extent that analytes are completely undetectable by MS. In this work, we investigate how ionization and ion-transfer efficiencies are affected by drastically reducing the flow into the MS. A postcolumn concentric flow-splitting device was constructed to allow the measurement of analyte signal and ionization suppression across a range of flow rates (0.1-200 microL/min). Using this device, the effects of flow rate on signal intensity and ionization suppression were measured in analytical experiments that included flow injection analysis MS, postcolumn addition LC-MS, and on-line LC-MS analysis of metabolites generated from rat liver microsomes. The device used to deliver 0.1 microL/min flows is referred to as a nanosplitter because it achieved high split ratios (2000:1), producing flow rates comparable to those observed in nanoelectrospray. The nanosplitter maintained chromatographic integrity with high fidelity and allowed the direct comparison of analyte signal across a range of flow rates (0.1-200 microL/min). A significant improvement in concentration and mass sensitivity as well as a reduction in signal suppression is observed when the performance at 200 versus 0.1 microL/min flow rate is compared. Using this specially designed concentric splitting device, the advantages of ultralow flow ESI were easily exploited for applications employing large bore chromatography.  相似文献   

11.
A fully automated high-throughput liquid-liquid extraction (LLE) methodology has been developed for preparation of biological samples using a 96-well LLE plate and a 96-channel robotic liquid handling workstation. The 96-well LLE plate is made of a 96-well filter plate filled with inert diatomaceous earth particles, allowing continuous and efficient extraction of analytes between the aqueous biological sample and the organic extraction solvent. Two carboxylic acid-based protease inhibitor compounds with high and low levels of plasma protein binding were chosen for the development and application of the automated methodology. The LLE extracts of the plasma samples of the two compounds were analyzed by high-performance liquid chromatography with electrospray (ESI) tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method was developed using a rapid gradient LC separation, followed by sample introduction through an ionspray interface in the negative ion mode and tandem mass spectrometric detection with selected reaction monitoring. In the optimized LLE method, a formate buffer solution was first loaded into a 96-well filter plate packed with inert diatomaceous earth material. Then crude plasma samples and a water-immiscible organic solvent, methyl ethyl ketone, were sequentially added to the LLE plate so that LLE would occur in the interface between the two liquid phases on the surface of individual particles in each well. The organic eluate containing extracted analytes was evaporated and reconstituted for LC-MS/MS analysis. This fully automated LLE methodology avoids several disjointed steps involved in a manual or semiautomated LLE method, leading to significantly reduced sample preparation time, increased sample throughput, and clean sample extracts for improved ESI-MS/MS detection. The automated LLE methodology is universal and can be employed for sample preparation of other biological fluids. The complete bioanalytical method, based on the automated LLE and fast gradient LC-MS/MS, was validated and successfully applied to the quantitative analysis of protease inhibitors in rat plasma.  相似文献   

12.
The ability to manipulate and effectively utilize small proteomic samples is important for analyses using liquid chromatography (LC) in combination with mass spectrometry (MS) and becomes more challenging for very low flow rates due to extra column volume effects on separation quality. Here we report on the use of commercial switching valves (150-microm channels) for implementing the on-line coupling of capillary LC columns operated at 10,000 psi with relatively large solid-phase extraction (SPE) columns. With the use of optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained demonstrating peak capacities of approximately 1000 for capillaries having inner diameters between 15 and 150 microm. The on-line coupled SPE columns increased the sample processing capacity by approximately 400-fold for sample solution volume and approximately 10-fold for sample mass. The proteomic applications of this on-line SPE-capillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Using an ion trap tandem MS it was typically feasible to identify 1100-1500 unique peptides in a 5-h analysis. Peptides extracted from the SPE column and then eluted from the LC column covered a hydrophilicity/hydrophobicity range that included an estimated approximately 98% of all tryptic peptides. The SPE-capillary LC implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for automated proteomic analyses.  相似文献   

13.
Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the LC separation prior to NMR analysis is demonstrated. The SPE unit allows the use of normal protonated solvents for the LC separation and fully deuterated solvents for flushing the trapped compounds to the NMR probe. Thus, solvent suppression is no longer necessary. Multiple trapping of the same analyte from repeated LC injections was utilized to solve the problem of low concentration and to obtain 2D heteronuclear NMR spectra. In addition, a combination of the SPE unit with a recently developed cryoflow NMR probe and an MS was evaluated. This on-line LC-UV-SPE-NMR-MS system was used for the automated analysis of a Greek oregano extract. Combining the data provided by the UV, MS, and NMR spectra, the flavonoids taxifolin, aromadendrin, eriodictyol, naringenin, and apigenin, the phenolic acid rosmarinic acid, and the monoterpene carvacrol were identified. This automated technique is very useful for natural product analysis, and the large sensitivity improvement leads to significantly reduced NMR acquisition times.  相似文献   

14.
Capillary electrophoresis (CE) is now clearly the separation technique of the decade. One aspect that is still in need of improvement is concentration sensitivity, especially when CE is used in conjunction with on-column UV-visible absorptiometry, by far the most common practice. Electromigration injection (EI) is among the most prominent techniques in CE that serves to improve the attainable limits of detection; it is also the most convenient and simplest of all injection modes. Unfortunately, EI is affected both from sample to sample (the amount of an analyte introduced depends on sample conductance) and from analyte to analyte within a sample (the introduction is strongly biased on analyte electrical mobility). Previously we have shown the utility of small loops affixed at the tip of a capillary (Anal. Chem. 1995, 67, 3853-3860; 1996, 68, 1164-1168). The present paper shows that there are remarkable advantages to be gained from forming a film of the sample solution on a wire loop and using the loop itself as the high-voltage electrode to perform electromigration from a very small sample volume. The sample constituents can be essentially exhaustively electromigrated from this volume in less than 1 min, and the mobility induced bias is dramatically lowered. The observed experimental behavior agrees with theoretical models.  相似文献   

15.
Although LC-MS methods are increasingly used for the absolute quantification of proteins, the lack of appropriate internal standard (IS) hinders the development of rapid and standardized analytical methods for both in vitro and in vivo studies. Here, we have developed a novel method for the absolute quantification of a therapeutic protein, which is monoclonal antibody (mAb). The method combines liquid chromatography tandem mass spectrometry (LC-MS/MS) and protein cleavage isotope dilution mass spectrometry with the isotope-labeled mAb as IS. The latter was identical to the analyzed mAb with the exception that each threonine contains four (13)C atoms and one (15)N atom. Serum samples were spiked with IS prior to the overnight trypsin digestion and subsequent sample cleanup. Sample extracts were analyzed on a C18 ACE column (150 mm x 4.6 mm) using an LC gradient time of 11 min. Endogenous mAb concentrations were determined by calculating the peak height ratio of its signature peptide to the corresponding isotope-labeled peptide. The linear dynamic range was established between 5.00 and 1000 microg/mL mAb with accuracy and precision within +/-15% at all concentrations and below +/-20% at the LLOQ (lower limit of quantification). The overall method recovery in terms of mAb was 14%. The losses due to sample preparation (digestion and purification) were 72% from which about 32% was due to the first step of the method, the sample digestion. This huge loss during sample preparation strongly emphasizes the necessity to employ an IS right from the beginning. Our method was successfully applied to the mAb quantification in marmoset serum study samples, and the precision obtained on duplicate samples was, in most cases, below 20%. The comparison with enzyme-linked immunosorbent assay (ELISA) showed higher exposure in terms of AUC and Cmax with the LC-MS/MS method. Possible reasons for this discrepancy are discussed in this study. The results of this study indicate that our LC-MS/MS method is a simple, rapid, and precise approach for the therapeutic mAb quantification to support preclinical and clinical studies.  相似文献   

16.
Generic methodology for the automated preparation and analysis of drug levels in plasma samples within a drug discovery environment was achieved through the redesign of a protein precipitation assay to a microtiter (96-well) plate format and the application of robotic liquid handling for performance of all transfer and pipetting steps. Validation studies revealed that the application of robotics to sample preparation, in general, maintained the analytical accuracy and precision compared with preparing samples manually. The use of rapid gradient LC-MS/MS for analysis coupled with flow diversion of the solvent front allowed the introduction of protein-precipitated samples into the mass spectrometer without the necessity for source cleaning. The problem inherent in automatically pipetting plasma, caused by fibrinogen clots, was overcome by storing samples at -80 degrees C and thus precluding clot formation. The resulting methodology allowed sample preparation for a 96-well plate designed to accommodate 54 unknowns, duplicate 12-point calibration curves, and 6 sets of quality controls at three levels in approximately 2 h. This approach allowed an increase in throughput of sample preparation and analysis to >400 samples per day per LC-MS/MS instrument with minimal manual intervention. Overall, substantial time savings were realized, demonstrating that automation is an increasingly essential tool in a drug discovery bioanalytical environment.  相似文献   

17.
A novel attenuated total reflection (ATR) sensor, which integrates solid-phase extraction (SPE) and infrared detection, is presented. The flow cell, which enables the on-line coupling with a sequential injection system, is the core of the proposed sensor since it allows the continuous delivery of different solutions through the ATR and also the continuous spectrum acquisition. A SPE sorbent material (LiChrolut EN) was located in the sensitive element of the ATR without using any external coating substance, increasing the versatility of the system. A marked sensitivity enhancement was obtained as the analyte was concentrated before detection. The new sensor was qualitatively and quantitatively validated using the determination of caffeine in soft drinks as the model analytical problem. Linearity, precision (RSD = 4%), and sensitivity (LOD = 7 microg/mL) levels have been established. Finally, the main advantages and limitations of the new proposal are presented and compared with existing alternatives.  相似文献   

18.
LC-MS-based proteomics requires methods with high peak capacity and a high degree of automation, integrated with data-handling tools able to cope with the massive data produced and able to quantitatively compare them. This paper describes an off-line two-dimensional (2D) LC-MS method and its integration with software tools for data preprocessing and multivariate statistical analysis. The 2D LC-MS method was optimized in order to minimize peptide loss prior to sample injection and during the collection step after the first LC dimension, thus minimizing errors from off-column sample handling. The second dimension was run in fully automated mode, injecting onto a nanoscale LC-MS system a series of more than 100 samples, representing fractions collected in the first dimension (8 fractions/sample). As a model study, the method was applied to finding biomarkers for the antiinflammatory properties of zilpaterol, which are coupled to the beta2-adrenergic receptor. Secreted proteomes from U937 macrophages exposed to lipopolysaccharide in the presence or absence of propanolol or zilpaterol were analysed. Multivariate statistical analysis of 2D LC-MS data, based on principal component analysis, and subsequent targeted LC-MS/MS identification of peptides of interest demonstrated the applicability of the approach.  相似文献   

19.
The extensive metabolism and administration of low doses of ethinylestradiol (EE) in preclinical animal species necessitates a sensitive analytical method to quantify the drug at low picogram-per-milliliter concentrations in biological matrixes. A highly sensitive and accurate method based on the derivatization of EE with dansyl chloride coupled with liquid chromatography/tandem mass spectrometry is described. The dansyl derivatization of EE introduced a basic secondary nitrogen into the molecule that was readily ionized in commonly used acidic HPLC mobile phases. The derivative showed an intense protonated molecular ion at m/z 530 under positive turbo ion spray ionization. The collision-induced dissociation of this ion formed a distinctive product at m/z 171, corresponding to the protonated 5-(dimethylamino)naphthalene moiety. The selected reaction monitoring, based on the m/z 530 --> 171 transition, was highly specific for EE, since no background signal was observed from blank plasma obtained from rhesus monkeys. The limit of detection, at a signal-to-noise ratio of 5, was 0.2 fg/mL EE spiked into blank plasma. This allowed for a lower limit of quantitation of 5 pg/mL using a 50-microL plasma sample and 10-microL injection of dansylated derivative into the CTC-PAL Leap autosampler coupled to a Sciex API 4000 mass spectrometer. Using fast-gradient liquid chromatography, the analyte peak eluted at 1.6 min. The validation results showed high accuracy (% bias < 4) and precision (% CV < 7.5) at broad linear dynamic ranges (0.005-20 ng/mL), using deuterated EE as internal standard. Therefore, the facile dansyl derivatization coupled with tandem mass spectral analysis allowed the development of a highly sensitive and specific method for quantitation of trace levels of EE in the plasma of rhesus monkeys dosed orally and intravenously with EE.  相似文献   

20.
The rotating ball inlet (ROBIN) is presented in a new design for on-line matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). This method uses a capillary to deliver a matrix and analyte solution to the surface of a rotating ball upon which MALDI is carried out. The ball is in contact with a polymer gasket surrounding the capillary. Sample adhering to the surface of the ball is dragged past the gasket into the vacuum of the mass spectrometer where it is irradiated by a pulsed UV laser, and the resulting ions are mass-separated in a linear time-of-flight mass spectrometer. The mechanical sample introduction prevents clogging of the vacuum interface by matrix crystals or frozen solvent. Preliminary results from flow injection analysis (FIA) suggest that the new interface does not introduce a significant peak-tailing or memory effect. The system is capable of 20-30 h of continuous operation with a flow rate of 2 microL/min before cleaning of the ball is needed. With the prototype inlet, concentration detection limits are at the low micromolar level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号