首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
超高层建筑具有轻质高柔的特点,强风作用下其气弹效应明显;且水平风向角沿高度偏转,导致超高层建筑的风荷载和风致响应与不考虑风向偏转时有明显不同。为此,完成了风向偏转角为25°的偏转风场及其无偏等效风场下一方形截面千米级超高层建筑的气弹模型试验,基于试验所得的模型顶点加速度时程,结合Hilbert-Huang变换方法和改进的随机减量法识别了气动阻尼比,对比分析了风向角、折减风速和有无风向偏转对气动阻尼比、极值加速度、涡激共振临界风速和锁定区的影响规律,探究了偏转风作用下千米级超高层建筑的风致响应、气弹效应和涡激振动等特性。研究结果表明:风向角对气动阻尼比和极值加速度影响较大,会显著改变其变化规律和涡激共振临界风速;基于频域分析所得的涡激共振临界风速小于由气动阻尼比或极值加速度确定的涡激共振临界风速,表明后者所反映的涡激共振特性具有滞后性,将导致结构不安全;相比无偏等效风作用,偏转风作用下水平向气动阻尼比较大,结构的顶点极值加速度较小,角部极值加速度的最大降幅可达38.3%。  相似文献   

2.
高层建筑风荷载与风致振动是高层建筑抗风设计中的两个控制性因素。已有研究表明,外伸板可以有效降低结构风荷载,但其对结构风致振动的影响并未得到系统研究。选取6种不同的外伸板布置方案,分别开展刚性模型测压试验与气弹模型测振试验,针对布局不同的外伸板对高层建筑横风向风致响应的影响开展对比分析。结果表明:当折减风速不大于11时,外伸长度为7.5%B(B为建筑迎风面宽度)的竖直外伸板可使建筑的横风向位移标准差最多减小26%,外伸长度为12.5%B、相邻两层外伸板间距为8%H(H为建筑高度)的水平外伸板,能够使建筑横风向位移标准差最多减小37%;而当折减风速大于13时,外伸板反而会增大建筑结构的横风向风致响应,从而对建筑结构安全产生不利影响。对于采用外伸板的降载减振设计,当折减风速低于6时,气弹效应对建筑结构横风向风致响应基本没有影响;当折减风速介于6~11之间时,气弹效应能够进一步抑制横风向风致响应;而当折减风速大于13时,气弹效应会引起明显的气动负阻尼,加剧横风向风致响应。  相似文献   

3.
针对439 m的深圳京基金融中心(KFT)工程,采用气动弹性模型技术研究其横风向气动阻尼特性。根据工程地址的100 a重现期风速、缩尺比例以及前期刚体模型同步测压所得到结构风敏感风向(东西向)的广义力功率谱密度特征确定气弹模型试验的风速范围,通过风洞试验获取不同风速下气动弹性模型敏感风向的顶部加速度响应数据,应用随机减量技术计算分析横风向气动阻尼随折算风速的变化规律,试验考虑结构模态阻尼对气动阻尼的影响。结果表明:在折算风速为4~14的范围内,结构气动阻尼值均大于0且随风速的增大而增大,上游地王大厦(DWT)的干扰效应对气动阻尼未产生不利影响,KFT的基本频率和DWT脱落在尾流中的漩涡频率一致的100 a重现期风速时的气动阻尼比为1.25%,表明前期采用刚性模型试验对KFT进行抗风设计时,不考虑气动阻尼影响计算得到的结构风致荷载和风致响应偏于保守和安全。  相似文献   

4.
由于高层建筑阻尼小、频率低,易在风荷载作用下发生明显的气动弹性效应,出现不可忽略的气动负阻尼比。为此,考虑高层建筑的一阶线性弯曲模态,制作了长宽比2∶1的矩形截面高层建筑的单自由度气动弹性模型,模型比例1/600。进行了全风向下气弹模型风洞试验,每个风向测量了10个试验风速下的建筑顶部加速度响应,并采用随机减量方法,对矩形截面高层建筑气动阻尼比进行识别。研究结果表明:对于长宽比2∶1的矩形截面高层建筑,强轴方向的风致加速度响应远大于弱轴方向;两个主轴方向的顺风向气动阻尼比均为正值,但强轴方向的横风向气动阻尼比为负值,无量纲临界风速约为5.5;仅采用横风向气动阻尼比结果,可以很好地反映全风向的气动阻尼特性。  相似文献   

5.
对于某些超高层建筑,其横风向风振响应甚至超过顺风向而成为结构设计的控制性因素。为研究横风向风振响应的时程特性及变化规律,基于横风向脉动力谱,考虑风力的竖向相干性,通过谐波合成法模拟横风力时程,在时域内求解分析某超高层钢筋混凝土建筑横风向的风振响应。分析时考虑地貌、来流风速以及结构基频的变化,探讨各因素对风振响应的影响规律,为超高层建筑的抗风设计提供参考依据。  相似文献   

6.
针对按规范公式计算得到的超高层建筑结构风致振动不尽合理的问题,以西安环球贸易中心超高层建筑为工程背景,首先通过风洞试验测得各楼层的风荷载,再利用ANSYS参数化设计语言编制了能够精确求解超高层建筑风振系数及等效静风荷载的程序,进而对超高层建筑的抗风性能进行研究。结果表明:当风向角接近90°时,结构中部出现了极值位移风振系数,且其迎风面顺风向的变形和内力都达到了最大值,横风向的变形和内力则最小;当风向角为20°~70°时,位移风振系数随着楼层的增高而增加,其峰值出现在顶层;随着风向角的变化,结构扭转加速度峰值在各区间都是先减小后增大,特别是风向角呈45°左右时,结构扭转变形和基底扭矩达到了最大值;提出的将风洞试验与有限元分析相结合的新方法可为同类工程的抗风设计提供参考。  相似文献   

7.
基于高频天平测力风洞试验技术,在6种模拟湍流边界层风场中对12个不同长细比及厚宽比的矩形截面超高层建筑模型的气动力进行了测量,计算得到了各试验工况下的横风向气动力系数的导数,并分析了长细比、厚宽比及来流风场湍流强度对其的影响,同时给出了相应的拟合公式。在此基础上,进一步分析了超高层建筑横风向准定常气动阻尼比及驰振临界风速的变化规律。试验结果和分析结论可为超高层建筑的抗风设计提供参考。  相似文献   

8.
风荷载往往是超高层建筑结构安全性和舒适性的控制性荷载。本文通过大涡模拟技术并结合作者建议的一种新的湍流入口生成方法(NSRFG方法),对四种不同锥度的楔形建筑模型进行了风效应的数值模拟对比研究,以比较不同锥度对结构风荷载和风振响应的影响,及检验本文数值模拟方法的适用性。数值模拟结果表明,虽然不同锥度的建筑模型平均风压和脉动风压分布规律相似,但在结构响应方面,结构横风向峰值基底弯矩响应随模型锥度增大显著减少,表明采用适当锥度的体形可以有效地减小结构横风向气动荷载。本文数值模拟结果和风洞试验结果整体规律相符,表明结合改进的入流湍流生成技术的大涡模拟具有一定的精度,可以给超高层建筑气动外形优化研究提供有价值的参考。  相似文献   

9.
在边界层风洞模拟的台风风场中,针对考虑立面旋转影响的一系列退台外形超高层建筑模型进行同步测压试验,分析了不同退台方式对建筑的横风向气动力、气动弯矩功率谱密度和风致响应的影响。结果表明:采用退台方式可使建筑侧立面由等截面方式的频率相同的整体漩涡变成若干个频率不同的局部漩涡,从而有效减少了作用在结构上的横风向气动力和风致响应,进一步采用旋转退台方式则可以更好地抑制漩涡的整体性、削减结构横风向气动力并最终降低结构的横风向风致响应;作用于结构的基底气动弯矩取决于经过模态加权处理的气动力的分布,方形截面模型对气动弯矩影响最大的气动力出现在结构高度的80%处;对于不同退台方式的模型,对气动弯矩产生主要影响的仍然是结构顶部的气动荷载,其最大影响高度位于结构高度的80%~90%范围内。与方形等截面结构相比,不同退台方式可以有效降低作用在结构上的横风向风荷载,其降幅为75.0%~79.2%;采用退台旋转方式对横风向荷载的减少量可达91%。  相似文献   

10.
对超强台风“山竹”侵袭时珠三角地区数栋超高层建筑的风致响应实测结果进行分析和总结,开展内伶仃岛缩尺模型风洞试验,获取该岛对气象站点风速的影响系数,并依此对观测风速进行订正,结合实测和风洞试验分析和评价深圳湾壹号7号塔楼(T7)的抗风性能。结果表明:不同高度、平立面外形的超高层建筑实测风致最大峰值加速度均超过10 cm/s2,且超高层建筑风振响应和建筑高度不存在相关性;在所有被测的建筑中加速度响应最小的建筑为高度342 m的T7,其最大峰值加速度仅为13.2 cm/s2;参数识别得到T7的模态频率和阻尼比显示均具有明显的时变特征,最大风速时段识别的模态频率整体上较有限元数据模拟结果增大21%,前两阶模态阻尼比分别为2.1%和1.7%;优化的气动外形和合理的朝向是T7抗风性能优良的主要原因,对于一般矩形平面的超高层建筑应避免使其窄边面向所在地的强风主导风向;采用订正后的风速值和参数识别结果对风洞数据进行重分析,结果显示计算值和实测值吻合较好,验证了前期风洞试验的可靠性。  相似文献   

11.
Across‐wind aerodynamic damping ratios are determined from the wind‐induced acceleration responses of 10 aeroelastic models of square super high‐rise buildings in an urban flow condition (exposure category C in the Chinese code) using the random decrement technique. Moreover, the influences of amplitude‐dependent structural damping ratio on the estimation of aerodynamic damping ratio are discussed. The validity of estimated damping is examined through a comparison with previous research achievements. On the basis of the estimated results, the characteristics of the across‐wind aerodynamic damping ratios of modified square high‐rise buildings are studied. The effects of aerodynamically modified cross‐sections, such as chamfered, slotted and tapered cross‐section, on the across‐wind aerodynamic damping ratio are investigated. The results indicate that modifications of cross‐sections are not always effective in suppressing the aeroelastic effects of super high‐rise buildings. Low corner‐cut ratios (chamfer ratios from 5% to 20% and slot ratios from 5% to 10%) and low taper ratio (1%) significantly decrease the magnitudes of absolute aerodynamic damping ratios. However, large modifications of cross‐sections (slot ratio of 20% and taper ratios from 3% to 5%) increase wind‐induced responses by changing the aerodynamic damping ratios. According to the database, empirical aerodynamic damping function parameters are fitted for high‐rise buildings with aerodynamically modified square cross‐sections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The wind direction in the atmospheric boundary layer (ABL) twists with height due to the Coriolis force; this phenomenon is called the Ekman spiral. However, this phenomenon is generally not considered in the present wind load estimation of super high-rise buildings, which may lead to an incorrect estimation and affect the safety of structures. Therefore, this study considers and analyzes the influence of the Ekman spiral phenomenon in the wind direction reduction effect (WDRE) of the wind load of super high-rise buildings. First, this paper proposes an empirical fitting equation for the twisted wind direction angle for a height of 100–800 m according to the classical Ekman spiral theory model (CE model). Subsequently, on the basis of twisted wind, this paper proposes a method for the correction of the wind direction reduction factors (WDRFs) of strong winds considering the influence of the Ekman spiral phenomenon in the design wind load estimation of super high-rise buildings with heights of 400–800 m. A high-frequency balance force measurement test of a square-section super high-rise building model was performed to analyze the influence of the Ekman spiral phenomenon on the WDRE of the aerodynamic force and wind-induced response. Three Chinese cities (i.e., Beijing, Wuhan, and Kunming) are selected as case studies to illustrate the importance and necessity of the correction method. The results demonstrate that the proposed empirical fitting equation accurately determines the twisted wind direction angle at different latitudes and altitudes. Furthermore, estimating the design wind load while considering the WDRE and neglecting the influence of the Ekman spiral phenomenon may lead to a significant underestimation of the wind load of super high-rise buildings, rendering the designed building structure more dangerous.  相似文献   

13.
采用高频底座测力天平技术,对位于华南沿海城市的一建筑综合体的两栋超高层建筑(主塔和副塔,其高度分别为300 m和257 m)进行了风洞试验,考察了在副塔立面不同位置角区实施不同局部修改(包括凹角、切角和阳台不封闭)时相临主塔和上游高215 m的酒店对副塔横风向效应的影响。结果显示,副塔单体情况下,50 a横风向峰值基底弯矩和10 a重现期最大峰值加速度分别达到10.08 GN·m和0.50 m/s2,综合体的建筑布局可使副塔的峰值基底弯矩和最大峰值加速度分别减少64%和54%,但上游的酒店可使副塔最大峰值加速度增加16%;只考虑综合体时,推荐的上部凹角和下部阳台不封闭方案可使副塔的最大横风向峰值基底弯矩和最大峰值加速度分别减少20%和15%;考虑所有周边建筑的干扰效应时,推荐方案可使10 a重现期的最大峰值加速度减少12%,且在1~10 a重现期风速作用下的平均减振效果为11%。  相似文献   

14.
采用高频底座测力天平技术,对位于华南沿海城市的一建筑综合体的两栋超高层建筑(主塔和副塔,其高度分别为300 m和257 m)进行了风洞试验,考察了在副塔立面不同位置角区实施不同局部修改(包括凹角、切角和阳台不封闭)时相临主塔和上游高215 m的酒店对副塔横风向效应的影响。结果显示,副塔单体情况下,50 a横风向峰值基底弯矩和10 a重现期最大峰值加速度分别达到10.08 GN·m和0.50 m/s2,综合体的建筑布局可使副塔的峰值基底弯矩和最大峰值加速度分别减少64%和54%,但上游的酒店可使副塔最大峰值加速度增加16%;只考虑综合体时,推荐的上部凹角和下部阳台不封闭方案可使副塔的最大横风向峰值基底弯矩和最大峰值加速度分别减少20%和15%;考虑所有周边建筑的干扰效应时,推荐方案可使10 a重现期的最大峰值加速度减少12%,且在1~10 a重现期风速作用下的平均减振效果为11%。  相似文献   

15.
对钢结构高层建筑群中的典型狭长形建筑进行了表面风压的风洞模型试验,分别考虑了建筑为单体和群体的情况。利用试验获得的风荷载时程对该高层结构进行风振响应的动力时程分析,并着重对得到的与风致舒适度关联的加速度响应进行分析和讨论,对比群体效应对顺风向、横风向和扭转向峰值加速度的不同影响。结果表明,对于平面为狭长形的住宅钢结构高层建筑,扭转效应引起的风致峰值加速度不容忽略;而群体效应一般对结构的加速度呈增大趋势,而且对横风向及扭转向的增大程度通常大于对顺风向的程度。  相似文献   

16.
依据某超高层建筑,着重介绍了风洞试验的方法,描述了在考虑有、无环境建筑影响下,该高层建筑一些典型的表面风压特性以及一些测点风压随风向角的变化规律。结果表明:迎风面中上部风压系数较大,接近1.0;底部部分风压系数达到1.0;侧风面和背风面风压系数大多为负值,特别是靠近角落处由于涡旋脱落,其值可达到-2。环境建筑对该高层建筑表面风压的影响较大,特别在建筑中下部。为其进行结构设计提出一些参考。  相似文献   

17.
山地风场中超高层建筑风荷载幅值特性试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
针对山地风场中超高层建筑风荷载特点,在1.4m×1.4m风洞中进行了11个不同高宽比、厚宽比矩形截面和圆形截面超高层建筑表面测压风洞试验,分析了阻力系数平均值、均方根值和升力、扭矩系数均方根值受来流风湍流度、建筑高宽比、厚宽比和层相对高度等因素的影响。结果表明:矩形截面建筑各气动力幅值特性明显随湍流度、建筑高宽比、厚宽比、层相对高度的改变而变化,而圆形截面建筑各气动力幅值特性仅随湍流度、层相对高度的改变而变化。根据风洞试验结果,建立了正方形截面和圆形截面风荷载幅值特性的数学模型,通过比较说明与风洞试验结果吻合较好,可为山地风场中的超高层建筑风致响应计算提供依据。图11表5参10  相似文献   

18.
对超强台风“山竹”侵袭时珠三角地区数栋超高层建筑的风致响应实测结果进行分析和总结,开展内伶仃岛缩尺模型风洞试验,获取该岛对气象站点风速的影响系数,并依此对观测风速进行订正,结合实测和风洞试验分析和评价深圳湾壹号7号塔楼(T7)的抗风性能。结果表明:不同高度、平立面外形的超高层建筑实测风致最大峰值加速度均超过10 cm/s2,且超高层建筑风振响应和建筑高度不存在相关性;在所有被测的建筑中加速度响应最小的建筑为高度342 m的T7,其最大峰值加速度仅为13.2 cm/s2;参数识别得到T7的模态频率和阻尼比显示均具有明显的时变特征,最大风速时段识别的模态频率整体上较有限元数据模拟结果增大21%,前两阶模态阻尼比分别为2.1%和1.7%;优化的气动外形和合理的朝向是T7抗风性能优良的主要原因,对于一般矩形平面的超高层建筑应避免使其窄边面向所在地的强风主导风向;采用订正后的风速值和参数识别结果对风洞数据进行重分析,结果显示计算值和实测值吻合较好,验证了前期风洞试验的可靠性。  相似文献   

19.
对超强台风“山竹”侵袭时珠三角地区数栋超高层建筑的风致响应实测结果进行分析和总结,开展内伶仃岛缩尺模型风洞试验,获取该岛对气象站点风速的影响系数,并依此对观测风速进行订正,结合实测和风洞试验分析和评价深圳湾壹号7号塔楼(T7)的抗风性能。结果表明:不同高度、平立面外形的超高层建筑实测风致最大峰值加速度均超过10 cm/s2,且超高层建筑风振响应和建筑高度不存在相关性;在所有被测的建筑中加速度响应最小的建筑为高度342 m的T7,其最大峰值加速度仅为13.2 cm/s2;参数识别得到T7的模态频率和阻尼比显示均具有明显的时变特征,最大风速时段识别的模态频率整体上较有限元数据模拟结果增大21%,前两阶模态阻尼比分别为2.1%和1.7%;优化的气动外形和合理的朝向是T7抗风性能优良的主要原因,对于一般矩形平面的超高层建筑应避免使其窄边面向所在地的强风主导风向;采用订正后的风速值和参数识别结果对风洞数据进行重分析,结果显示计算值和实测值吻合较好,验证了前期风洞试验的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号