首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 797 毫秒
1.
通过浸渍沉淀法结合程序升温碳化法制备了Mo2C/Al2O3复合催化剂,并应用于二甲醚水蒸气重整催化体系的研究。考察了二甲醚水解催化载体、水解功能组分Al2O3与重整功能组分Mo2C的比例、反应物浓度对复合催化剂活性的影响。结果表明,β-Mo2C与γ-Al2O3载体以Mo/Al = 1/1耦合后能够高效催化二甲醚重整制氢,其最佳进料水醚比为5,最适反应温度为400℃。  相似文献   

2.
采用溶胶凝胶法和旋转镀膜法制备Er3+/Yb3+/Li+掺杂TiO2胶体和薄膜,确定上转换材料最优制备方案为n(乙酰丙酮)∶n(C16H36O4Ti∶H2O)∶n(异丙醇)∶n(Er(NO3)3·5H2O)∶n(Yb(NO3)3·5H2O)∶n(LiNO3)=1∶3∶9∶70∶0.12∶0.60∶0.15(物质的量之比),水的滴加速率为10 s/滴,溶液pH值为2~3,溶胶呈透明均匀淡黄色。吸收光谱在近红外区峰值明显。可见光透光率最高可达94.42%,较普通玻璃提高1%~2%。光伏组件通过光电转换效率测量系统进行检测,玻璃盖板镀膜后光伏组件的光电转换效率从16.5%升至17.2%,增加约0.7%。研究结果表明,该薄膜可提高玻璃盖板透光率,扩大光伏组件光谱吸收范围,增加其光电转换效率。  相似文献   

3.
采用反应分子动力学(ReaxFF MD)模拟方法研究了O2/CO2/H2O气氛下CO的燃烧。结果表明:根据化学平衡原理,高浓度CO2抑制CO的氧化,同时CO2在高温下参与反应CO2+H—→CO+OH,进一步抑制CO氧化。在较低温度条件下,较高浓度H2O的三体效应显著,抑制了CO氧化。另一方面,在较高温度条件下,H2O参与的H2O+H—→H2+OH和H2O+O—→OH+OH反应占据其化学作用的主导地位,进而促进CO氧化。随着O2浓度的增加,CO的氧化速度加快。  相似文献   

4.
光电催化CO2还原制备碳氢燃料是缓解当前能源和环境危机的潜在策略。现阶段,光电极的构建依然是光电催化CO2技术的关键点。由于Cu基催化剂具有低成本、高C2+选择性、高稳定性等适宜CO2还原应用的特性,构建新型Cu基光电极仍是CO2还原研究领域中研究热点。本文从P型Cu2O光阴极入手,系统研究了电沉积工况与光电催化CO2还原反应之间构效关系。研究结果表明,在恒温环境中,施加0.5 mA/cm2恒电流密度可获得结晶度良好的Cu2O光阴极,并实现C2产物的合成。其中,乙醇的选择性可达5.3%。本文研究结果可为设计和制造具有高活性的光电催化CO2还原光电阴极提供可行策略。  相似文献   

5.
本工作采用Fe3+对含有氧化石墨烯(graphene oxide,GO)预包覆Fe3O4的GO自支撑膜进行改性处理制备Fe3+诱导交联的预包覆Fe3O4纳米粒子复合热还原型氧化石墨烯自支撑膜(Fe3+@Fe3O4/r GO)。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等测试手段表征材料组成、结构与形貌,并研究Fe3+@Fe3O4/r GO自支撑膜作为锂离子电池负极的储锂性能。结果表明球状Fe3O4纳米颗粒被GO片层紧密包裹,且经过Fe3+诱导交联的Fe3+@Fe3O4/r GO自支撑膜稳定性显著提高;电化学结果表明,在电流密度为100 m A/g恒...  相似文献   

6.
合成了不同Rb掺杂量的钛酸锂(Li4-xRbxTi5O12; x = 0.010, 0.015, 0.020)作为锂离子电池的负极材料。测试结果显示,Rb离子掺杂有效增强了钛酸锂的电子电导率。相同的测试条件下,相比于未掺杂样品和高Rb含量掺杂样品(x = 0.015, 0.020),适量的Rb掺杂钛酸锂(Li3.99Rb0.01Ti5O12; x = 0.010)表现出最优的电化学性能。Li3.99Rb0.01Ti5O12材料表现出161.2 mA∙h/g的初始容量,且在1 C下经过1000次循环后容量保持率可达90.9%。此外,全电池Li3.99Rb0.01Ti5O12 // LiFePO4在0.5 C条件下首次放电容量为144 mA∙h/g,经过150次循环后,容量保持率为78.8%。  相似文献   

7.
对Li2CO3/Na2CO3/K2CO3及其二元和三元混合熔融盐的密度、比热容、黏度、热导率进行分子动力学模拟(MD),对比得出模拟结果与现有的实验数据和模拟值相近。结果表明:随着温度的升高,密度逐渐减小,离子之间的距离增加,导致对剪切应力的抵抗力变小,这说明单组分、二元和三元熔融盐黏度的负温度依赖性。对于熔融盐的热导率,单组分和二元熔融盐也呈现出负温度依赖性,而三元熔融盐趋势是随温度的升高呈上升状态。  相似文献   

8.
具有三维网络结构的NASICON型Na3V2(PO4)3材料,由于其稳定的电压平台,较高的理论容量(117 mA∙h/g),被视为一种具有良好应用前景的钠离子电池负极材料。采用溶剂热和进一步热处理的方式,获得石墨烯包封Na3V2(PO4)3的复合材料[Na3V2(PO4)3/G],有效提高了Na3V2(PO4)3的电子导电性。在0.01 ~ 3.00 V电压区间,0.2 C倍率进行测试时,Na3V2(PO4)3/G复合材料在230圈循环后,其放电比容量保持在100.9 mA∙h/g,容量保持率高达68.4%,即使在5 C倍率,其放电比容量仍可达65.2 mA∙h/g。然而,纯相Na3V2(PO4)3的放电比容量仅为47.4 mA∙h/g,容量保持率仅为44.7%,在5 C倍率时,其放电比容量仅为25.1 mA∙h/g,证实石墨烯包封结构能显著提升Na3V2(PO4)3的循环稳定性和倍率性能。  相似文献   

9.
由于等离子体增强化学的气相沉积(PECVD)法制备的SiOxNy薄膜中含有大量H原子,因而具有优异的表面钝化性能。通过在PERC太阳电池的Al2O3/SiNx背钝化叠层中间插入一层SiOxNy薄膜,形成Al2O3/SiOxNy/SiNx结构,可避免SiNx所带的固定正电荷对Al2O3负电荷场钝化效应的负面影响。试验结果表明,硅片少子寿命从原来的130 μs提高至162 μs,电池转换效率增加0.09%。同时,基于Al2O3/SiOxNy/SiNx背钝化的PERC太阳电池的LID也得到了改善,由对照组的1.83%下降到实验组的1.09%。  相似文献   

10.
针对有机相变材料热导率低的问题,将高热导率的纳米Fe2O3添加到硬脂酸/十八醇二元有机复合蓄热相变材料中,制备纳米复合蓄热相变材料。从分散剂的种类、分散剂与纳米材料的添加量以及超声时间4个方面研究其对纳米复合相变蓄热材料的稳定性及热物性的影响。结果表明,阴离子表面活性剂的分散效果优于阳离子和非离子表面活性剂。复合相变材料中添加质量分数为0.8%,十二烷基苯磺酸钠(SDBS)和质量分数为0.4%Fe2O3的体系,超声时间为80 min时,纳米Fe2O3在相变材料中的分散效果最好。添加纳米Fe2O3后复合蓄热相变材料的相变潜热及相变温度有所下降,热导率提高34.9%。300次热循环复合相变材料的相变温度波动区间不超过0.41℃,相变潜热波动区间不超过4.0%,热稳定性良好。  相似文献   

11.
The solid solutions of CexSn1−xO2 incorporated with alumina to form CexSn1−xO2–Al2O3 mixed oxides, by the suspension/co-precipitation method, were used to prepare CuO/CexSn1−xO2–Al2O3 catalysts for the selective oxidation of CO in excess hydrogen. Incorporating Al2O3 increased the dispersion of CexSn1−xO2, but did not change their main structures and did not weaken their redox properties. Doping Sn4+ into CeO2 increased the mobility of lattice oxygen and enhanced the activity of the 7%CuO/CexSn1−xO2–Al2O3 catalyst in the selective oxidation of CO. The selective oxidation of CO was weakened as the doped fraction of Sn4+ exceeded 0.5. Incorporating appropriate amounts of Sn4+ and Al2O3 could obtain good candidates 7%CuO/CexSn1−xO2–Al2O3(20%), 1–x=0.1–0.5, for a preferential oxidation (PROX) unit in a polymer electrolyte membrane fuel cell system for removing CO. Its activity was comparable with, and its selectivity was much larger than, that of the noble catalyst 5%Pt/Al2O3.  相似文献   

12.
As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C3N4/Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C3N4/Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C3N4/Si electrode is evaluated, the initial discharge capacity of g-C3N4/Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C3N4/Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.  相似文献   

13.
《Solar Energy》2000,68(6):523-540
Layered LixCoO2 and LixNiO2 thin films (x1) were prepared by a peroxo wet chemistry route from Li(I), Co(II) and Ni(II) acetate precursors and the addition of H2O2. Structural changes during the processing of xerogel to final oxide were followed by X-ray diffraction and infrared spectroscopy. Electrochromic properties were determined with in-situ potentiodynamic, potentiostatic and galvanostatic spectroelectrochemical measurements. Single dipped films with composition Li0.99Co1.01O2 or Li0.94Ni1.06O2 exhibited stable voltammetric response in 1 M LiClO4/propylene carbonate electrolyte after about 60 cycles. The total charge exchanged in a reversible charging/discharging cycle was about ±30 mC cm−2 for Li0.99Co1.01O2 and ±20 mC cm−2 for Li0.94Ni1.06O2 oxide films. Galvanostatic measurements showed that about 1/2 (x0.5) and 2/3 (x0.3) of Li+ ions could be reversibly removed from the structure of Li0.99Co1.01O2 and Li0.94Ni1.06O2 films, respectively. Practical applicability of Li0.99Co1.01O2 and Li0.94Ni1.06O2 oxide films was studied in electrochromic devices with WO3(H+)Li+ormolyteLi0.99Co1.01O2 and WO3(H+)Li+ormolyteLi0.94Ni1.06O2 configuration. The monochromatic transmittance Ts (λ=633 nm) of dark blue coloured devices was extremely low (Ts3%), whereas in bleached state the value reached around Ts70%.  相似文献   

14.
The steam treatment effect has been investigated over the doubly impregnated catalyst, Ni/Ce–ZrO2/θ-Al2O3, in steam methane reforming (SMR). The catalyst was remarkably deactivated by steam treatment but reversibly regenerated by H2-reduction. XRD results showed that the steam treatment resulted in the formation of NiAl2O4 which is inactive for SMR but it was reversibly converted to Ni by the reduction. The reversible oxidation-reduction of Ni state was also evidenced by XPS and it was observed that the formation of NiAl2O4 is more favorable at higher temperature. It is most likely that the alumina support is only partially covered with Ce–ZrO2 and most Ni directly interacts with θ-Al2O3 which would probably make easy formation of NiAl2O4 in the presence of steam alone. The results imply that, during the start-up procedure in SMR, too high concentration of steam could deactivate seriously Al2O3 supported Ni catalysts.  相似文献   

15.
Proton conductivity of Li2SO4-Al2O3 (LA) based electrolyte was determined under non-reducing dynamic conditions using current interruption technique. The performance of LA as electrolyte has been examined at 600 °C in a H2S fuel cell with MoS2-NiS as anode catalyst and NiO as cathode catalyst. XRD and XPS results show that Li2SO4 is not stable when heated in pure H2S as it is reduced to Li2S by hydrogen produced in equilibrium amounts from the thermal decomposition of H2S. In contrast, under dynamic operation in a H2S fuel cell the concentration of H2 is much lower, the reduction reaction does not occur and, surprisingly, Li2SO4 is a chemically stable electrolyte.  相似文献   

16.
Oxidative conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 (V:Ce=1:1) catalyst, with or without steam and limited O2, has been studied at different temperatures (700–850 °C), C3H8/O2 ratio (4.0), H2O/C3H8 ratio (0.5) and space velocity (3000 cm3 g−1 h−1). The propane conversion, selectivity for propylene and net heat of reaction (ΔHr) are strongly influenced by the reaction temperature and presence of steam in the reactant feed. In the presence of steam and limited O2, the process involves a coupling of endothermic thermal cracking and exothermic oxidative conversion reactions of propane which occur simultaneously. Because of the coupling of exothermic and endothermic reactions, the process operates in an energy-efficient and safe manner. The net heat of reaction can be controlled by the reaction temperature and concentration of O2. The process exothermicity is found to be reduced drastically with increasing temperature. Due to the addition of steam in the feed, no coke formation was observed in the process.  相似文献   

17.
LiNi0.5Co0.44Fe0.06VO4 cathode material has been synthesized by a citric acid:polyethylene glycol polymeric method at 723 K for 5 h in air. The surface of the LiNi0.5Co0.44Fe0.06VO4 was coated with various wt.% of Al2O3 by a wet chemical procedure and heat treated 873 K for 2 h in air. The samples were characterized by XRD, FTIR, SEM, and TEM techniques. XRD patterns expose that the complete crystalline phase occurred at 723 K and there was no indication of new peaks for the coated samples. FTIR spectra show that the complete removal of organic residues and the formation of LiNi0.5Co0.44Fe0.06VO4. TG/DTGA results reveal that the formation of LiNi0.5Co0.44Fe0.06VO4 occurred between 480 and 670 K and the complete crystalline occurred at 723 K. SEM micrographs show the various morphological stages of the polymeric intermediates. TEM micrographs of the pristine LiNi0.5Co0.44Fe0.06VO4 reveal that the particle size ranged from 130 to 150 nm and Al2O3 coating on the fine particles was compact and had an average thickness of about 15 nm. The charge–discharge experiments were carried out between 2.8 and 4.9 V (versus Li) at a current rate of 0.15 C. The 1.0 wt.% Al2O3 coated sample had the best electrochemical performance, with an initial capacity of 65 mAh g−1 and capacity retention of 60% after 50 cycles. The electrochemical impedance behavior suggests that the failure of pristine cathode performance is associated with an increase in the impedance growth on the surface of the cathode material upon continuous cycling.  相似文献   

18.
锂离子电池的高功率密度和高能量密度等特性使其成为电动汽车能源和新能源电网储能的重要载体。功率性能和安全特性是锂离子电池发展的两个主要挑战。钛酸锂Li4Ti5O12材料因具有良好的结构稳定性、安全性能、长循环寿命、高功率特性和高低温放电性能,被认为是锂电池负极材料的良好备选。综述了以钛酸锂材料为负极的锂离子电池的相关工作,介绍了钛酸锂材料的结构、电化学特性、制备方法和作为电池负极材料面临的主要问题,重点介绍了钛酸锂负极电池的全电池性能和健康状态研究等方面。  相似文献   

19.
LiNi1/3Mn1/3Co1/3O2 prepared by a spray drying method exhibited poor cyclic performance when it was operated at rates of 0.5C and 2C in 3–4.6 V. A metal oxide (ZrO2, TiO2, and Al2O3) coating (3 wt%) could effectively improve its cyclic performance at both 0.5C and 2C. Electrochemical impedance spectroscopy (EIS) studies suggested that both the surface resistance and the charge transfer resistance of the bare LiNi1/3Mn1/3Co1/3O2 significantly increase after 100 cycles, whose origin is mainly related to the change in both the particle surface and electrode morphologies. The presence of a thin metal oxide layer could remarkably suppress the increase in the total resistance (sum of the surface resistance and the charge transfer resistance), which was attributed to the improvement in good cyclic performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号