共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
以郑州地铁盾构隧道下穿郑西高铁桥梁工程实例,通过数值模拟分析,对左右线隧道分别下穿桥梁后,隧道施工对桥梁承台变形、承台内力及桩侧摩阻力变化、桥墩及上部结构的影响以及下穿桥梁前后桥梁结构设计控制参数的变化进行分析,根据规范沉降控制标准,对比已有下穿高铁桥梁经验及现场监测结果,分析表明:隧道左右线分开各穿一桥跨能较好的拉开空间距离,净距约在2倍洞径情况下,对承台变形影响较小,仅加强洞内注浆措施能满足隧道下穿引起的桥梁沉降控制要求;由于隧道开挖卸载的影响,桩侧摩阻力、桩身轴力、承台内力以及桥梁结构设计控制参数均会有一定影响,但变化较小。 相似文献
4.
为适应城市的发展需要和满足城市居民日益增长的出行需求,城市地铁甚至需要下穿机场飞行区。通过对某市区间盾构下穿机场跑道进行研究,建立MIDAS三维计算模型,分析并进行计算盾构施工后引起的地面沉降,从而确保区间盾构施工期机场跑道的安全运行。在中风化石灰岩等较好岩层中,且隧道埋深较深(大于等于18 m)时,区间盾构施工对地表沉降影响较小。 相似文献
5.
盾构小净距下穿地铁运营线对既有地铁沉降变形影响风险大,盾构接收时施工难度高,如何控制对既有地铁运营线的影响以及保证盾构接收安全是施工的关键.为降低小净距下穿地铁运营线盾构接收施工时的风险,文章基于杭海城际铁路余杭至许村区间,针对盾构在小净距下穿地铁1号线并进行盾构接收施工时存在的沉降控制难度大和盾构接收洞门涌水、涌砂等问题,在工程水文地质条件、既有运营地铁线现状及施工风险分析基础上,通过采用端头井加固、洞内深孔注浆、自动化实时监测以及钢套筒辅助接收等施工技术及控制措施,控制了盾构下穿对既有地铁的沉降影响并保证了既有地铁运营安全,有效地控制了盾构接收的风险,成功完成了下穿运营地铁及盾构接收施工. 相似文献
6.
了解地铁盾构区间下穿施工对既有运营有轨电车道床的影响对工程安全开展至关重要。以沈阳 地铁新建高全盾构区间下穿有轨电车 1号线为工程依托,采用 Peck理论计算公式和数值模拟相结合的方 法预测道床沉降变形,给出地层变形控制措施和施工监测方案,并根据现场实测数据,进一步验证了设计 方案的合理性和安全性。研究结果表明:采用 Peck沉降曲线预测道床的最大沉降值略微偏大;对于双线 盾构区间,左线、右线盾构先后穿越道床期间引起的道床沉降约占最终累计沉降值的 60% ~70%,且先行 掘进区间上方道床沉降值偏大。建议类似地铁下穿工程采取 Peck公式和数值模拟结合的方式预测沉降 变形、提前制定地层变形控制措施及应急处理方案、加强监控量测、实时反馈施工动态保证安全。 相似文献
7.
依托深圳市地铁12号线宝臣区间工程,提出了盾构下穿西乡河、地下管网和侧穿建筑物以及穿越孤石、上软下硬地层、富水砂层和全断面硬岩对应的掘进处理措施,解决了复杂地质及环境条件下地铁盾构区间隧道施工技术难题。 相似文献
8.
9.
地铁隧道盾构施工引起的地面沉降规律分析 总被引:1,自引:0,他引:1
该文对广州地铁2号线某区间盾构隧道施工过程的地面沉降监测数据进行分析,探讨了盾构施工过程地表沉降规律、沉降槽分布形式及其影响范围和程度。研究结果对今后类似工程施工过程的隧道周边建(构)筑物的保护、施工参数的优化以及工程的顺利实施具有参考价值。 相似文献
10.
11.
周伟涛 《中国水能及电气化》2021,(2):28-35
在城市地铁网的建设过程中,经常出现盾构隧道下穿建筑物、小半径曲线及浅覆土等工程施工重难点。为确保盾构机在推进过程中的不间断运行和沿线风险源的安全,结合天津地铁1号线双林站—李楼站盾构区间的施工实践,针对风险源的特点,提出了盾构始发与接收端头加固方案、区间隧道盾构掘进施工方案等详细措施,并运用MIDAS/GTS有限元软件建立了盾构区间—土体—既有上地站的协同作用整体模型,模拟了盾构区间施工过程,得出协同作用整体模型下既有上地站站房及其独立基础应力及位移变化规律,保证盾构隧道下穿过程中各项风险源的安全。研究成果可为今后类似工程提供借鉴和参考。 相似文献
12.
近年我国盾构隧道修建数量随着需求不断增加,周围土体在盾构隧道施工时会受到一定程度的扰动,为了保证开挖时周围土体的稳定,地表沉降的研究是有必要的。针对重庆轨道交通27号线盾构隧道,利用ABAQUS有限元分析软件对盾构隧道施工模拟,结合数值模拟结果对影响地表沉降的因素进行讨论,总结关于不同地表埋深、等代层厚度、注浆层弹性模量这3个因素对地表沉降的影响规律,表明埋深深度越深,土体扰动越小,地表沉降值越小;等代层的厚度越厚,盾尾的缝隙填充越密实,地表沉降值越小;注浆层弹性模量越大,说明盾构施工注浆越及时,地表沉降值越小。 相似文献
13.
正近年来,随着国家对地铁建设的高度重视,地铁的施工建设得到了快速发展。在区间隧道施工过程中由于地质环境的影响,尤其在不同断面形式和不同级别围岩下的施工环境下,给区间隧道施工技术提出了更高的要求。为了避免围岩在不同断面形式及围岩类别下施工过程中的较大变形情况的发生,施工人员必须针对不同地质情况,不同断面形式及围岩类别分析变形产生的原因,有效采取加固措施,防止大变形发生,从而确保区间隧道安全快速的通过。本文以青岛地铁青岛火车站—人民会堂站区间为例,阐述了区间隧道在不同断面形式、不同地质情况下采取相应控制变形技术措施,有效防止大变形发生,为提高区间隧道施工技术水平提供一些借鉴。青岛地铁青岛火车站—人民会堂站区间工程,左线全长1258.313m,右线全长1252.291m,设施工竖井一处,横通道转入正洞后大小、里程分别为三线单洞大断面及双 相似文献
14.
为评价盾构隧道下穿湖泊的施工安全性,依托西安地铁 8号线曲江池西路—曲江池寒窑区间工程,采用多物理场耦合软件建立黄土地层盾构隧道下穿曲江池的隧道开挖模型,并选取四种典型工况从盾构开挖面稳定性、盾构施工地表沉降以及盾构管片结构安全性三个方面进行分析。研究结果表明:随着盾构隧道开挖,围岩塑性区范围逐渐增大呈现“水平椭圆”状,且四种典型工况下未出现贯通盾构开挖面与地表以及贯通左线与右线围岩的塑性区,即盾构施工过程中开挖面相对稳定;四种典型开挖工况下的施工地表沉降量最大值为 20.42mm,出现于隧道线正上方地表,满足规范要求;管片结构的最大主应力与最大剪应力数值较小,均出现于隧道前半段的拱腰处,盾构管片受力相对安全。研究成果对于保证盾构下穿湖泊安全施工具有重要工程意义,也可为类似工程的建设和运营提供借鉴和参考。 相似文献
15.
以富水砂性地质条件下某地铁区间盾构隧道下穿铁路施工工程为背景,研究下穿施工引起地
表沉降的规律。首先对Peck方程进行分析,提出地表差异沉降系数的概念,用于表征盾构施工引起的
地表最大差异沉降。然后利用数值模拟方法分析地层损失率、隧道埋深、地层加固等因素对铁路设施沉
降的影响规律。结果表明:地层损失率在0.5% ~3.0%变化时,减小地层损失可以同时降低地表沉降
及差异沉降,控制地层损失率在1.0%以内,可满足铁路设施变形控制标准;增大隧道埋深可以降低地
表最大沉降量,同时可以降低地表最大差异沉降;对隧道周围土体注浆加固可以显著降低盾构下穿铁
路施工引起的铁路设施沉降。 相似文献
16.
新建地铁隧道下穿输水隧洞,会引起既有结构的变形及附加应力,可能影响其运行安全。针对某地铁隧道下穿南水北调输水隧洞进行安全影响评价,通过建立三维有限元模型对施工过程进行仿真分析,预测输水隧洞及地表的沉降,分析不同工况下地铁隧道施工对既有输水隧洞的安全影响,提出地铁隧道下穿输水隧洞的变形控制指标,并结合监测数据进行验证。结果表明:地铁隧道下穿输水隧洞施工主要引起既有输水隧洞轴线方向的不均匀沉降,进而引起输水隧洞的轴线方向附加应力,应控制输水隧洞轴线方向应力不超过允许应力,进而间接确定变形控制指标,必要时可根据计算结果进行加固方案的设计。研究成果对类似穿越工程的设计、施工参数及监控量测控制指标的确定等具有参考价值。 相似文献
17.
相博张学东王才静洪广庭杨健光 《云南水力发电》2023,(12):63-66
随着我国城市地下交通轨道的不断完善,在新建地下交通路线中会遇到越来越多的既有结构物,且形式会越来越繁杂,新建隧道近距离下穿既有隧道就是最常见的结构形式之一。针对新建隧道正交下穿既有隧道,利用MIDAS GTS-NX和FLAC3D软件对不同间距条件下的下穿隧道进行数值模拟。在此基础上,分析新建下穿隧道正交既有隧道施工间距的影响,确保新建与既有隧道的施工安全和运营安全。 相似文献
18.
随地铁工程的迅速发展,下穿工程越发常见,如何预测和控制新建隧道下穿施工中对既有结构的影响,以保证既有机构的正常使用已成为设计者和科研人员的重要课题。结合深圳地铁7号线"零距离"下穿既有福民车站工程,通过数值模拟、监控分析等方法,研究下穿施工对车站既有结构的影响程度和范围。研究表明:下穿施工过程中,整体车站结构呈现轻微上浮的趋势,较大变形出现在隧道上方底板结构处及其两侧,与监测数据分析结果相符;车站楼板结构主应力主要以承受压应力为主,与隧道相接处承受最大主应力拉应力。通过数值模拟和监测对比分析,研究下穿施工影响规律,为类似工程提供参考和借鉴。 相似文献
19.
为加快双线地铁隧道施工,采用2台盾构机同时开挖,盾构横向间距不变情况下,纵向间距过近会加剧对土体的扰动,影响地表建(构)筑物安全。以武汉地铁三号线为工程背景,选取双线平行隧道盾构同向推进为研究对象,采用现场监测和数值模拟计算方法,综合分析盾构开挖时隧道横向、纵向地表变形特征,揭示双线平行隧道盾构同向推进时的纵向相互影响规律。结果表明:数值计算结果与现场监测数据相吻合;盾构通过后地表形成沉陷槽,隧道拱顶上方地表变形最大,距离隧道轴线越远,地表变形越小;开挖过程中盾首上方隆起值达到最大,盾构穿过后沉降迅速增加,最终趋于稳定;双线地铁隧道盾构同向推进中,盾构的二次扰动加剧了地表最终变形量,盾构纵向间距对地表最终变形量没有影响,随着盾构纵向间距增加,地表总体沉降速率减缓,当盾构纵向距离大于50 m时较为安全可靠。研究成果旨在为今后的地铁隧道安全快速的施工提供依据。 相似文献
20.