共查询到20条相似文献,搜索用时 62 毫秒
1.
李富刚 《数码设计:surface》2021,(3)
制造业是我国经济发展的重要组成部分,在未来科技不断发展的大背景下,制造业想要获得长足的发展与进步,就需要与科技发展进行深度结合,通过日常加工生产方式的变革,来进行资源的优化配置,打造个性化和专业化协同发展的新局面。随着科学技术的进一步创新,互联网云计算技术给制造业创造了新的发展机遇。本文对云制造环境下的零件加工服务优化配置进行进一步的研究。 相似文献
2.
3.
4.
针对云制造环境下因存在大量功能相同或相似的制造云服务而导致用户很难获得合适云服务的问题,提出了一种基于可信评价的制造云服务选择方法。对问题进行了抽象,将可靠性、可用性、时效性、价格和诚信度纳入可信特征集,并考虑评价时间、评价者的诚信度对可信值的影响,采用加权平均的方法计算制造云服务的整体可信度;在此基础上,综合考虑制造云服务的功能、任务负载、当前状态和物理距离等因素,通过匹配功能、任务负载和价格,并结合可信评价值来指导云服务的选择。仿真结果表明,所提方法能够有效地识别云制造环境下的制造云服务实体,可提高交易活动的成功率,满足用户的功能需求和非功能需求。 相似文献
5.
制造云服务组合是一种提高云制造资源利用率,实现制造资源增值的新技术,对云制造产业的快速发展具有重要的支撑作用。随着云制造技术的日益成熟,网络上出现了大量具有相同制造功能和不同服务质量的制造云服务,如何通过这些制造云服务构建出既能满足用户制造需求,又具有最优服务质量的组合服务是云制造领域面临的难题。针对这一问题,将协作学习、变异和精英保留机制引入最大最小蚁群算法,构造了具有学习和变异能力的最大最小蚁群算法,并使用该算法求解服务质量感知的制造云服务优化组合问题。仿真实验结果验证了算法的有效性。 相似文献
6.
7.
8.
云制造资源的有效分类是资源服务化封装及后续制造资源服务检索的前提条件,针对高维度特征、多类别加工设备资源的分类问题。依据描述云制造加工设备资源属性特征的XML文档,提取资源属性特征并进行向量化处理。基于SVM算法建立制造资源自动分类预测算法模型,引入SMO算法提升SVM分类算法的分类效率,并利用网格搜索寻求SVM算法的最优参数从而优化SVM算法效果。最后基于某设备资源集的原始设备信息对不同加工设备进行分类实验,验证了该分类模型的有效性以及可行性。 相似文献
9.
随着云计算和信息技术的发展,制造企业逐渐由生产型向服务型转化.为了满足用户需求、解决云制造服务优选问题,提出一种基于多层次属性建模的云制造服务匹配和优选方法.对云制造服务资源和属性进行详细描述和划分,构建多层次属性描述模型.从基本属性、功能属性、非功能属性、综合匹配四个层次对候选服务和请求服务进行匹配计算.对不同类型的... 相似文献
10.
11.
一种新的多维关联规则挖掘算法 总被引:12,自引:0,他引:12
关联规则是数据挖掘中一个重要课题.文章给出一种基于遗传算法和蚂蚁算法相结合的多维关联规则挖掘算法.新算法利用了遗传和蚂蚁算法共有的良好全局搜索能力,并克服了遗传算法局部搜索能力弱和蚂蚁算法搜索速魔慢的缺陷.实验结果表明,新算法在对具有稀疏特性的多维关联规则的挖掘中体现了良好的性能. 相似文献
12.
基于改进蚁群算法的云计算任务调度 总被引:1,自引:0,他引:1
利用云中资源进行高效任务调度是保证云计算系统可靠运行的关键问题。提出一种基于改进蚁群优化算法的任务调度方法。算法采用蚂蚁系统的伪随机比例规则进行寻优,防止算法过快收敛到局部最优解,同时结合排序蚂蚁系统和最大最小蚂蚁系统的设计思想完成信息素更新,有效求解优化问题。实验结果显示,该算法具有很好的寻优能力,提高了云资源的利用率。 相似文献
13.
在市场环境的不确定性、市场竞争加剧的背景下,要求企业之间的远程服务紧密联系。因此,高可靠性的远程服务动态优化协调成为现代企业发展先进智能制造系统所要解决的重要问题。为此,将Holon理论引入到企业远程服务配置中,运用遗传蚁群混合算法的运用来提高Holon制造系统的健壮性,解决跨地域企业之间远程服务的配置和调度过程中的协商问题。 相似文献
14.
蚁群优化是人工智能领域中群体智能的分支之一,已经成功地应用于旅行推销员、作业调度选择等优化问题上,但用它解决数据挖掘问题还是一个新的研究课题。本文提出一种蚂蚁分类算法Ant_Miner3,并在Web数据挖掘中采用相应的页面优化分类方法,对非结构化数据集的处理进行了相关的研究和优化。经实验验证,该算法能够导出更优更简洁的分类规则。 相似文献
15.
传统的蚁群算法在收敛速度上较慢且容易导致局部最优解,本文提出一种基于双模式的混合蚁群算法,即在算法的每次迭代中有比例地选择其中一种模式来获得蚂蚁的最优路径,可以实现在相对较少的时间内寻找出最优路径,且避免陷入局部最优解。由于蚁群算法天然具有并行化的特性,本文将混合蚁群算法与MapReduce结合,大大缩短了算法的执行时间。实验结果表明,基于MapReduce的混合蚁群算法可以实现在相对较少的时间内寻找出较优的路径。 相似文献
16.
为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点变异,由此扩大规则的搜索空间,提高规则的预测准确度。在Ant-miner算法的信息素更新公式中加入挥发系数,使其更接近现实蚂蚁的觅食行为,防止算法过早收敛。基于UCI标准数据的实验结果表明,该算法相比传统Ant-miner算法具有更高的预测准确度。 相似文献
17.
基于关联规则的数据挖掘技术对交叉销售的策略制定有着重要作用.针对关联规则算法需多次扫描数据库和可能产生庞大的候选集等问题,提出了一种新的基于关联规则的蚁群算法,利用蚁群算法中的信息素因子得到最强关联规则,从而找到具有商业价值的最大频繁项集.实验结果表明新算法充分发挥了蚁群算法自组织,多样性,并行性等优点,不仅增加了频繁项集的生成数量,而且较大的提高了它的生成效率. 相似文献
18.
为了更有效地解决产品配置优化问题,建立了基于相关矩阵的多目标产品优化配置模型,运用了改进的层次分析法计算各目标权重,提出了一种基于蚁群算法的产品配置求解方法,并在C#环境下进行了仿真实验,利用多次实验优化了算法参数。实验结果表明,该方法能有效解决产品配置求解问题,具有一定的理论参考价值和实际意义。 相似文献
19.
针对当前云计算环境中节点规模巨大,单个节点资源配置较低,寻找有效计算资源效率不高的缺点,文中在Google公司的Map/Reduce框架上提出了两个基于蚁群优化的资源调度策略ACO1和ACO2,并在这两个资源调度策略中引入双向蚂蚁机制。在该双向蚂蚁机制中蚂蚁通过相互交流,能够快速地发现合适的虚拟机资源,从而使得Master节点能够快速地为用户任务分配虚拟机。实验结果表明这两个利用了双向蚂蚁机制的资源调度策略显著减少了为用户任务寻找虚拟机的时间,从而使得用户任务能够更快地获得虚拟机,保证用户作业能够按时完成。 相似文献
20.
针对规则集学习问题,提出一种遵循典型AQ覆盖算法框架(AQ Covering Algorithm)的蚁群规则集学习算法(Ant-AQ)。在Ant-AQ算法中,AQ覆盖框架中的柱状搜索特化过程被蚁群搜索特化过程替代,从某种程度上减少了陷入局优的情况。在对照测试中,Ant-AQ算法分别和已有的经典规则集学习算法(CN2、AQ-15)以及R.S.Parpinelli等提出的另一种基于蚁群优化的规则学习算法 Ant-Miner在若干典型规则学习问题数据集上进行了比较。实验结果表明:首先,Ant-AQ算法在总体性能比较上要优于经典规则学习算法,其次,Ant-AQ算法在预测准确度这样关键的评价指标上优于Ant-Miner算法。 相似文献