共查询到10条相似文献,搜索用时 62 毫秒
1.
该文在合成孔径雷达图像的极化非监督Wishart分类的基础上,给出了一种利用极化干涉信息对合成孔径雷达图像进行非监督分类的方法。该方法主要利用一(66)的极化干涉相关矩阵,从而可以同时考虑单幅图像的全极化信息以及两幅像对之间的互相关信息。该文详细阐述了该方法的具体实现,并利用NASA/JPL的SIR-C/X-SAR系统在中国天山地区的L波段实测数据进行了实验研究。给出了利用该方法对实验数据进行分类的结果,并与极化非监督Wishart分类的结果进行了比较。结果表明,该方法能够很好地分辨不同类型的地物,保持地物的细节,并且比极化非监督Wishart分类结果有很大改善。 相似文献
2.
3.
该文提出一种利用贝叶斯信息准则自动确定聚类类别数的极化干涉SAR非监督分类算法。该方法首先利用Shannon熵特征对极化干涉SAR图像进行初始分类,然后利用期望最大化(Expectation-Maximization, EM)算法和标号代价(LabelCost)优化算法对分类结果进行迭代优化,同时通过贝叶斯信息准则(Bayesian Information Criterion, BIC)自动确定非监督分类的最佳类别数。实验结果表明该算法能够较准确地确定分类类别数,并具有较为满意的分类效果。 相似文献
4.
传统极化SAR图像地物分类方法通常存在计算效率低和维度灾难等问题,受益于随机蕨分类器的简单性、鲁棒性和处理高维特征空间的能力,文中提出了一种基于随机蕨算法的极化SAR分类框架算法。随机蕨分类器中大量的二元特征捕获了极化SAR图像中地物的空间信息、纹理属性和与其相邻像素的关系。该方法能够在人工标注像素数量较少的情形下对极化SAR图像进行准确、高效的地物分类并且所需要的训练一个随机蕨分类器的时间仅需几十秒。最终的分类实验结果表明,该方法在Oberpfaffenhofen数据集上达到了较好的分类性能和运行效率。 相似文献
5.
该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器。最终用训练好的分类器对极化SAR图像进行测试。对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法。 相似文献
6.
基于H/平面的分类器对于具有相似散射类型的地物的分类能力很差,为此该文直接使用特征值特征来进行分类。首先提取特征值特征,并使用一种自适应调整高斯分量个数的高斯混合模型对特征值分布进行较为准确地拟合,然后采用朴素贝叶斯分类器进行初步分类。针对可能存在特征值分布较为相近导致错分的问题,计算每两类地物的特征值分布的相似度,将相似度大于给定阈值的类别对组成相似性表,对于这些相似对再用基于Wishart距离的K近邻分类器进行细分。综合分析机载和星载SAR数据上的实验结果,表明这种方法能够克服基于H/的非监督分类方法对于特征值利用的一些不足,且与基于SVM的分类方法效果相当。 相似文献
7.
该文首先采用H/分类对像素进行了初始猜测,然后进一步采用Bayes最大似然估计(ML)分类法对像素进行重新归类.不同波段电磁波对地物散射具有不同的属性,因而我们采用双波段全极化SAR数据结合的分类方法,得到了更好的分类结果.SAR图像的相干斑会影响图像的分类准确度和精度.在进行分类处理前,对双波段全极化SAR图像相干斑进行矢量滤波处理.该文使用NASA/JPL实验室在天山地区的实测数据对这些分类算法进行了实验研究.给出了单波段以及双波段全极化SAR分类结果的伪彩色图.其中双波段全极化SAR滤波后数据具有相对最优的分类结果. 相似文献
8.
针对相似度表达的困难性以及极化SAR图像中固有的相干斑噪声问题,该文提出了一种基于张量积(TPG)扩散的非监督极化SAR图像地物分类算法。张量积扩散一般用于光学图像的分割或检索,目前研究表明,其已可用于极化SAR(PolSAR)图像地物分类。基于张量积扩散可以稳健地度量数据点之间的测地线距离,因此能够更好地挖掘数据点之间内在的相似度信息。首先,将极化SAR图像进行分割,生成许多超像素;其次,基于超像素提取7种特征并生成一个特征向量,进而利用高斯核构建相似度矩阵;再次,基于已构建的相似度矩阵,利用张量积扩散沿着数据点的内在流形结构进行相似度的传播,实现全局的相似性度量,从而获得一个具有更强判别能力的相似度矩阵;最后,基于此相似度矩阵进行谱聚类以得到地物分类结果。该文在仿真和实测极化SAR图像上均进行了大量实验,并与4种经典算法进行对比,结果表明该方法可以有效地结合空间邻域相似度信息并取得更高的分类精度。 相似文献
9.
10.
基于全极化SAR非监督分类的迭代分类方法 总被引:4,自引:1,他引:4
本文在全极化合成孔径雷达(SAR)特征分解和最大似然估计(ML)分类的基础上,提出基于全极化SAR极化特征分解及最大似然估计的非监督分类迭代算法.这种方法灵活性好、精度高.本文提出了迭代分类方法的几种方案.针对特征分解和ML分类的各自特点,进行了分析比较,可以根据实际需要选择适合的迭代方法.并利用NASA JPL实验室的实测数据对该迭代分类算法进行了实验研究,得到了很好的实验结果.实验结果证明这种迭代算法有很好的适应性和很强的鲁棒性. 相似文献