共查询到11条相似文献,搜索用时 0 毫秒
1.
We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure.The effect of different laser energy and the effect of different laser wavelengths were compared.The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method,whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation(SBE).Each approach was also carried out by using the Al emission line and Mg emission lines.It was observed that the SBE method generated a little higher electron number density value than the Stark broadening method,but within the experimental uncertainty range.Comparisons of N_e determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength.These results show the applicability of the SBE method for N_e determination,especially when the system does not have any pure emission lines whose electron impact factor is known.Also use of Mg lines gives superior results than Al lines. 相似文献
2.
Jianbin LIU 《等离子体科学和技术》2022,24(7):75101
Detachment in helium (He) discharges has been achieved in the EAST superconducting tokamak equipped with an ITER-like tungsten divertor. This paper presents the experimental observations of divertor detachment achieved by increasing the plasma density in He discharges. During density ramp-up, the particle flux shows a clear rollover, while the electron temperature around the outer strike point is decreasing simultaneously. The divertor detachment also exhibits a significant difference from that observed in comparable deuterium (D) discharges. The density threshold of detachment in the He plasma is higher than that in the D plasma for the same heating power, and increases with the heating power. Moreover, detachment assisted with neon (Ne) seeding was also performed in L- and H-mode plasmas, pointing to the direction for reducing the density threshold of detachment in He operation. However, excessive Ne seeding causes confinement degradation during the divertor detachment phase. The precise feedback control of impurity seeding will be performed in EAST to improve the compatibility of core plasma performance with divertor detachment for future high heating power operations. 相似文献
3.
Jiayuan ZHANG 《等离子体科学和技术》2022,24(10):105102
In recent EAST experiments, current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives (RFCD). In contrast to previous density scan experiments, which showed an outward shift of the current density profile of lower hybrid current drive (LHCD) in higher plasma density, the core electron temperature (Te(0)) is found to affect the LHCD current profile as well. According to equilibrium reconstruction, a significant increase in on-axis safety factor (q0) from 2.05 to 3.41 is observed by careful arrangement of RFCD. Simulations using ray-tracing code GENRAY and Fokker–Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile, revealing the sensitivity of the LHCD current profile to Te(0). The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher Te(0). With a lower Te(0), the LHCD current profile broadens due to off-axis deposition of power density. The sensitivity of the power deposition and current profile of LHCD to Te(0) provides a promising way to effectively optimize current profile via control of the core electron temperature. 相似文献
4.
To investigate the interaction of dusty plasma with magnetized plasmas at divertor plasma simulator, radial profiles of plasma density(ne) and electron temperature were measured in terms of plasma discharge currents and magnetic flux intensity by using a fast scanning probes system with triple tips. Dusty plasma with dusts(a generation rate of 3 μg s~(-1) and a size of 1–10 μm)was produced via interactions between a high-power laser beam and a full tungsten target. As ne increases, the scale of the effects of dusty plasma injection on magnetized plasmas was decreased. Also, the duration of transient fluctuation was reduced. For numerical estimation of plasma density perturbation due to dusty plasma injection, the result was ~10% at a core region of the magnetized plasma with n_e of(2–5)×10~(11) cm~(-3) at steady state condition. 相似文献
5.
Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations,i.e.the inner divertor,the outer divertor and the dome,in the EAST superconducting tokamak for typical ohmic plasma conditions.It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations.However,it quickly approaches a similar steady state value for Ar recycling efficiency >0.9.OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor. 相似文献
6.
Ping WANG 《等离子体科学和技术》2022,24(7):75103
Lithium Beam Emission Spectroscopy systems in the outer midplane and divertor Langmuir probe arrays embedded in the divertor target plates, are utilized to investigate the scrape-off layer (SOL) blob transition and its relation with divertor detachment on EAST. The blob transition in the near SOL is observed during the density ramp-up phase. When the plasma density, normalized to the Greenwald density limit, exceeds a threshold of fGW ∼ 0.5, the blob size and lifetime increases by 2 – 3 times, while the blob detection rate decreases by about 2 times. In addition, a weak density shoulder is observed in the near SOL region at the same density threshold. Further analysis indicates that the divertor detachment is highly correlated with the blob transition, and the density threshold of blob transition is consistent with that of the access to the outer divertor detachment. The potential physical mechanisms are discussed. These results could be useful for the understanding of plasma-wall interaction issues in future devices that will operate under a detached divertor and high density conditions (over the blob transition threshold). 相似文献
7.
It is challenging to measure the electron density of the unsteady plasma formed by charged particles generated from explosions in the air, because it is transient and on a microsecond time scale. In this study, the time-varying electron density of the plasma generated from a small cylindrical cyclotrimethylenetrinitramine(RDX) explosion in air was measured, based on the principle of microwave Rayleigh scattering. It was found that the evolution of the electron density is related to the diffusion of the detonation products. The application of the Rayleigh microwave scattering principle is an attempt to estimate the electron density in explosively generated plasma. Using the equivalent radius and length of the detonation products in the bright areas of images taken by a high-speed framing camera, the electron density was determined to be of the order of 10~(20) m~(-3). The delay time between the initiation time and the start of variation in the electron-density curve was 2.77–6.93 μs. In the time-varying Rayleigh microwave scattering signal curve of the explosively generated plasma, the electron density had two fluctuation processes. The durations of the first stage and the second stage were 11.32 μs and 19.20 μs,respectively. Both fluctuation processes increased rapidly to a peak value and then rapidly attenuated with time. This revealed the movement characteristics of the charged particles during the explosion. 相似文献
8.
Qibin LUAN Wenda ZHANG Youjie DENG Yanfei WANG Li LI Yueqiang LIU Xiaojiang HUANG Fangchuan ZHONG 《等离子体科学和技术》2021,23(10):105101-111
A single-legged coil behind the lower divertor and covering a 120° toroidal angle is utilized in a recent EAST discharge,for the purpose of increasing the wetted area of the divertor surface by locally modifying the magnetic field near the X-point.The plasma response,in particular,the plasma boundary surface corrugation due to the single-legged coil current,is modeled by the updated MARS-F code,by computing the plasma displacement for all important toroidal harmonics (n =1,2,4 and 5) associated with the partial toroidal coverage by the coil.The plasma response produced by the single-legged coil is found to be non-local and is of the kink-peeling type.For a reference EAST plasma with a lower single-null magnetic configuration,the plasma boundary corrugation near the X-point,produced by the upper single-legged coil,is about twice as large as that produced by the lower single-legged coil,despite the proximity of the latter to the X-point. 相似文献
9.
In this study, plasma density measurements were performed near the plume region of the remote plasma source (RPS) in Ar/ NF3 gas mixtures using a microwave cutoff probe. The measured plasma density is in the range of 10 10 –10 11 cm −3 in the discharge conditions with RPS powers of 2–4 kW and gas pressures of 0.87–4 Torr. The plasma density decreased with increasing gas pressures and RPS powers under various Ar/ NF3 mixing ratios. This decrease in the plasma density measured at the fixed measurement position (plume region) can be understood by the reduction of the electron energy relaxation length with increases in the gas pressures and mixing ratio of NF3/(Ar / NF3). We also performed downstream etching of silicon and silicon oxide films in this system. The etch rate of the silicon films significantly increases while the silicon oxide is slightly etched with the gas pressures and powers. It was also found that the etch rate strongly depends on the wafer position on the processing chamber electrode, and that the etch selectivity reached 96–131 in the discharge conditions of RF powers (3730–4180 W) and gas pressures (3.6–4 Torr). 相似文献
10.
The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensity was presented.By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current,the plasma evolution was studied.A Faraday cup was used for the measurement of the electron beam current and a single electrostatic probe was used for the measurement of the ion current.Experimental results indicated that the ion current was in phase with the electron beam current in the pressure range from 200 Pa to 3000 Pa and in the beam current range lower than 20 mA,the residual density increased approximately linearly with the maximum density in the log-log plot and the fitting coefficient was irrelative to the pressure.And then three kinds of kinetic models were developed and the simulated results given by the kinetic model,without the consideration of the excited atoms,mostly approached to the experimental results.This indicated that the effect of the excited atoms on the plasma density can be ignored at intermediate pressure and low electron beam current intensity,which can greatly simplify the kinetic model.In the end,the decrease of the plasma density when the beam current was suddenly off was studied based on the simplified model and it was found that the decease characteristic at intermediate pressure was approximate to the one at high pressure at low electron beam intensity,which was in good accordance with the experimental results. 相似文献
11.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma. 相似文献