共查询到18条相似文献,搜索用时 81 毫秒
1.
为解决视觉SLAM(同时定位与地图创建)算法依赖图像亮度而对光照变化场景敏感的问题,提出一种基于在线光度标定的半直接视觉SLAM算法。首先,根据相机成像原理,提出基于光度标定的帧间位姿估计方法,在求解位姿的同时对原始的输入图像进行光度校正。其次,在特征追踪环节采取最近共视关键帧匹配策略,以提升特征点匹配效率。最后,对后端重投影迭代优化策略进行改进,降低光照变化对视觉SLAM算法的精度和鲁棒性的影响。在TUM、EuRoC数据集上的实验结果表明,本算法的轨迹估计精度优于LSD-SLAM和SVO 2.0算法,尤其是在中等难度、高难度的数据集序列上。在真实环境测试中,通过对比本算法与激光方法的轨迹估计结果,证明本算法有效提高了传统视觉SLAM方法在光照不均匀场景下的定位精度与鲁棒性。 相似文献
2.
《传感器与微系统》2019,(9):19-23
稠密重建问题是视觉同时定位与地图构建(SLAM)的重要环节,每一个像素点深度距离的准确测量对稠密重建都起到重要作用。在工业应用中,往往使用RGB-D相机进行稠密重建,但是RGB-D相机有一些量程、应用范围和光照的限制。因此,采用滤波器方式深度估计的单目相机,不仅可以保证SLAM实时性要求,同时还适用于室外、大场景等场合。针对高斯滤波算法存在稠密重建准确率不高的问题,提出了一种基于簇的均匀—高斯深度滤波算法,采用改进的滤波算法处理错误匹配的像素点,在正确处理外点数据的基础上,解决深度值错误估计、相邻像素深度值相差过大的问题。实验结果表明:改进型深度估计算法重建的稠密地图更加细致,且重建准确率提高了约30%。 相似文献
3.
为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个步骤组成.首先,通过最小化图像光度误差,利用稀疏图像对齐算法实现对相机位姿的初步估计.然后,使用视觉里程计的位姿估计对图像进行运动补偿,建立基于图像块实时更新的高斯模型,依据方差变化分割出图像中的运动物体,进而剔除投影在图像运动区域的局部地图点,通过最小化重投影误差对相机位姿进行进一步优化,提升相机位姿估计精度.最后,使用相机位姿和RGB-D相机图像信息构建TSDF稠密地图,利用图像运动检测结果和地图体素块的颜色变化,完成地图在动态环境下的实时更新.实验结果表明,在室内动态环境下,本文算法能够有效提高相机位姿估计精度,实现稠密地图的实时更新,在提升系统鲁棒性的同时也提升了环境重构的准确性. 相似文献
4.
提出了一种新的基于半直接视觉里程计的RGB-D SLAM(同步定位与地图创建)算法,同时利用直接法和传统特征点法的优势,结合鲁棒的后端优化和闭环检测,有效提高了算法在复杂环境中的定位和建图精度.在定位阶段,采用直接法估计相机的初始位姿,然后通过特征点匹配和最小化重投影误差进一步优化位姿,通过筛选地图点并优化位姿输出策略,使算法能够处理稀疏纹理、光照变化、移动物体等难题.算法具有全局重定位的能力.在后端优化阶段,提出了一种新的关键帧选取策略,同时保留直接法选取的局部关键帧和特征点法选取的全局关键帧,并行地维护2种关键帧,分别在滑动窗口和特征地图中对它们进行优化.算法通过对全局关键帧进行闭环检测和优化,提高SLAM的全局一致性.基于标准数据集和真实场景的实验结果表明,算法的性能在许多实际场景中优于主流的RGB-D SLAM算法,对纹理稀疏和有移动物体干扰的环境的鲁棒性较强. 相似文献
5.
视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是自主移动机器人、自动驾驶车和无人机关键技术,是当前机器人和计算机视觉领域的研究热点。对当前主流的SLAM技术发展历程及研究现状进行概述。重点围绕RGB-D SLAM研究展开讨论,包括:对各类视觉传感器进行性能分析和对比;对当前具有代表性的几类RGB-D SLAM系统的原理、方法和技术性能进行详细的分析;对RGB-D SLAM的关键问题、测试数据集及评估指标进行综合性归纳。最后,对视觉SLAM的发展趋势进行展望与总结。 相似文献
6.
针对现有方法在机器人室内定位中无法同时满足高精度定位、快速处理及稠密地图重建的问题,在拥有跟踪、地图构建和回环检测三线程的ORB-SLAM3系统基础上设计了三维稠密地图构建算法,分别在跟踪阶段、局部光束法平差阶段(bundle adjustment,BA)和全局BA阶段,对满足需求的关键帧进行二次采样和位姿更新,然后通过关键帧和对应位姿计算得到三维点云,最终获得稠密地图。实验结果表明,所提方法在Jetson AGX Xavier嵌入式平台上对TUM数据集的定位速度达到了10.8 frame/s,均方根误差仅有0.213%,验证了该系统的高精度与快速性,可以满足机器人室内定位与建图需求。 相似文献
7.
8.
9.
构建更详细的地图以及估计更精准的相机位姿一直都是同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)技术所追求的目标,但是以上目标与实时性要求、较低的计算代价和受限的计算资源条件是相矛盾的.提出一种在单目ORB-SLAM(Oriented FAST and Rota... 相似文献
10.
现有的SLAM方案中,单目SLAM系统无法满足高精度定位。因此提出了一种基于深度估计网络的SLAM系统。此系统在ORB-SLAM的系统上,融合了Sobel边界引导和场景聚合网络(sobel-boundary-induced and scene-aggregated network,SS-Net)的系统,仅依靠单目实现精准定位。SS-Net考虑了不同区域的深度关系和边界在深度预测中的重要特征。基于边界引导和场景聚合网络(boundary-induced and scene-aggregated network,BS-Net),SS-Net提出了边界提取模块(edge detection,ED),改进了图像细化模块(stripe refinement,SR)。SS-Net网络能够考虑不同区域之间的深度相关性,提取重要的边缘,并融合不同层次下面的网络特征,可以处理单帧图像,从而获得整个序列的深度估计。在NYUD v2和TUM数据集上的大量实验表明,SS-Net深度预测有较高的准确性,并且证明了基于SS-Net的SLAM系统比原系统更优秀。 相似文献
11.
12.
传统的RGB-D视觉同时定位与制图(SLAM)算法在动态场景中识别动态特征时会产生数据错误关联,导致视觉SLAM估计姿态精度退化。提出一种适用于动态场景的RGB-D SLAM算法,利用全新的跨平台神经网络深度学习框架检测场景中的动态语义特征,并分割提取对应的动态语义特征区域。结合深度图像的K均值聚类算法和动态语义特征区域对点特征深度值进行聚类,根据聚类结果剔除动态特征点,同时通过剩余特征点计算RGB-D相机的位姿。实验结果表明,相比ORB-SLAM2、OFD-SLAM、MR-SLAM等算法,该算法能够减小动态场景下的跟踪误差,提高相机位姿估计的精度和鲁棒性,其在TUM动态数据集上相机绝对轨迹的均方根误差约为0.019 m。 相似文献
13.
14.
从同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)的研究进程出发,通过回顾SLAM近三十年来的研究方法,对移动机器人SLAM的研究进行系统的总结,并指出其存在的三个关键问题.针对这三个问题,介绍了基于概率估计和基于视觉的SLAM方法,对基于概率估计的SLAM实现方法进行对比总结,并对视觉传感器的不同特性对基于视觉的SLAM方法研究进展进行阐述,随后对比分析不同方法的优缺点,讨论了视觉SLAM存在的问题.最后展望SLAM未来的发展方向. 相似文献
15.
16.
由于单机器人同步定位与建图(SLAM)技术在实际应用中的局限性,多机器人协同SLAM技术以较强的灵活性和鲁棒性受到研究人员的广泛关注,并且在农业生产、环境监测、海上搜救等领域具有巨大应用前景。多机器人协同SLAM是多机器人协同工作的核心及大范围复杂环境内及时获得场景感知信息的关键,能使多个机器人在协同工作时共同定位并构建任务空间地图,主要基于单机器人SLAM算法、多机器人系统架构、地图融合等技术实现。结合多机器人协同SLAM的发展历程,对比分析当前主流的多机器人协同SLAM算法。从传感器的角度,将多机器人协同SLAM分为激光协同SLAM、视觉协同SLAM以及激光视觉融合协同SLAM三类,并对多机器人协同SLAM的架构选择、多机通信、相对位姿、地图融合和后端优化问题进行讨论,同时指出异构机器人协同、基于深度学习的语义SLAM是多机器人协同SLAM的未来发展趋势。 相似文献
17.
为了改进快速同时定位和地图创建(FastSLAM)算法的粒子集性能、提高估计精度,提出基于AMPF和FastSLAM的复合SLAM算法.将辅助边缘粒子滤波器(AMPF)与FastSLAM架构相结合,用AMPF估计机器人位姿,单个粒子的位姿提议分布用无轨迹卡尔曼滤波估计.设计与AMPF和FastSLAM架构均兼容的采样方法和粒子数据结构,在FastSLAM框架下用扩展卡尔曼滤波递归估计地图.实验表明,该算法的粒子集性能比FastSLAM 2.0算法好,并且它的位姿估计精度高于FastSLAM 2.0算法.此外,粒子数较少时,该算法的估计精度较高,从而可适当减少粒子数目来提高算法的计算效率. 相似文献
18.
针对在室内机器人定位和三维稠密地图构建系统中,现有方法无法同时满足高精度定位、大范围和快速性要求的问题,应用具有跟踪、地图构建和重定位三平行线程的ORB-SLAM算法估计机器人三维位姿;然后拼接深度摄像头KINECT获得的三维稠密点云,提出空间域上的关键帧提取方法剔除冗余的视频帧;接着提出子地图法进一步减少地图构建的时间,最终提高算法的整体速度。实验结果表明,所提系统能够在大范围环境中准确定位机器人位置,在运动轨迹为50 m的大范围中,机器人的均方根误差为1.04 m,即误差为2%,同时整体速度为11帧/秒,其中定位速度达到17帧/秒,可以满足室内机器人定位和三维稠密地图构建的精度、大范围和快速性的要求。 相似文献