共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton exchange membrane fuel cell (PEMFC) technology based on perfluorosulfonic acid (PFSA) polymer membranes is briefly reviewed. The newest development in alternative polymer electrolytes for operation above 100 °C is summarized and discussed. As one of the successful approaches to high operational temperatures, the development and evaluation of acid doped polybenzimidazole (PBI) membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physicochemical characterization and fuel cell testing. A high temperature PEMFC system, operational at up to 200 °C based on phosphoric acid‐doped PBI membranes, is demonstrated. It requires little or no gas humidification and has a CO tolerance of up to several percent. The direct use of reformed hydrogen from a simple methanol reformer, without the need for any further CO removal, has been demonstrated. A lifetime of continuous operation, for over 5000 h at 150 °C, and shutdown‐restart thermal cycle testing for 47 cycles has been achieved. Other issues such as cooling, heat recovery, possible integration with fuel processing units, associated problems and further development are discussed. 相似文献
2.
A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1 at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 mW cm–2 using oxygen and air, respectively, at 175 °C. 相似文献
3.
A series of polybenzimidazoles (PBIs) incorporating main chain sulphonic acid groups were synthesised as random copolymers with p‐PBI in varying ratios using polyphosphoric acid (PPA) as both the polymerisation solvent and polycondensation reagent. The PPA process was used to produce high molecular weight phosphoric acid (PA) doped PBI gel membranes in a one‐step procedure. These membranes exhibit excellent mechanical properties (0.528–2.51 MPa tensile stress and 130–300% tensile strain) even at high acid doping levels [20–40 mol PA/PRU (polymer repeat unit)] and high conductivities (0.148–0.291 S cm–1) at elevated temperatures (>100 °C) with no external humidification, depending on copolymer composition. Fuel cell testing was conducted with hydrogen fuel and air or oxygen oxidants for all membrane compositions at temperatures greater than 100 °C without external feed gas humidification. Initial studies showed a maximum fuel performance of 0.675 V for the 25 mol% s‐PBI/75 mol% p‐PBI random copolymer at 180 °C and 0.2 A cm–2 with hydrogen and air, and 0.747 V for the same copolymer at 180 °C and 0.2 A cm–2 with hydrogen and oxygen. 相似文献
4.
Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications. 相似文献
5.
High temperature proton exchange membrane fuel cells (HT‐PEMFCs) with phosphoric acid doped polybenzimidazole (PBI) membranes have gained tremendous attentions due to its attractive advantages over conventional PEMFCs such as faster electrochemical kinetics, simpler water management, higher carbon monoxide (CO) tolerance and easier cell cooling and waste heat recovery. In this study, a three‐dimensional non‐isothermal model is developed for HT‐PEMFCs with phosphoric acid doped PBI membranes. A good agreement is obtained by comparing the numerical results with the published experimental data. Numerical simulations have been carried out to investigate the effects of operating temperature, phosphoric acid doping level of the PBI membrane, inlet relative humidity (RH), stoichiometry ratios of the feed gases, operating pressure and air/oxygen on the cell performance. Numerical results indicate that increasing both the operating temperature and phosphoric acid doping level are favourable for improving the cell performance. Humidifying the feed gases at room temperature has negligible improvement on the cell performance, and further humidification is needed for a meaningful performance enhancement. Pressurising the cell and using oxygen instead of air all have significant improvements on the cell performance, and increasing the stoichiometry ratios only helps prevent the concentration loss at high current densities. 相似文献
6.
A facile way to prepare semi‐interpenetrating polymer network (semi‐IPN) membrane which adopted 1,3‐benzenedisulfonyl azide (1,3‐BDSA) to crosslink with fluorine containing polybenzimidazole (Aliphatic‐16F‐PBI) in the Aliphatic‐16F‐PBI/Nafion composite membranes was proposed. By means of Fourier transformed infrared (FTIR) spectra analysis, the possible crosslinking reaction mechanism was investigated. Results suggested that 1,3‐BDSA molecule loses a nitrogen and forms nitrene upon heating. Then this nitrene reacts with C–H bond of Aliphatic‐16F‐PBI. Scanning electron microscope (SEM) images showed that the compatibility of PBI and Nafion improved while hexadecafluoro‐octyl groups were implanted into Aliphatic‐16F‐PBI molecule. The properties of Aliphatic‐16F‐PBI/Nafion composite membranes for fuel cell applications were determined through tests of gel fraction, thermogravimetry (TG), dimensional stability, mechanical property and proton conductivity. The gel fraction could reach 27.9% when 7.4% 1,3‐BDSA was added into the composite membranes. The proton conductivity of the semi‐IPN Aliphatic‐16F‐PBI/Nafion composite membranes could reach 0.69 × 10–2 S cm–1 at 120 °C at 100% relative humidity. Such high crosslink degree resulted in the improvement of the tensile strength, dimensional stability and chemical oxidative stability of semi‐IPN Aliphatic‐16F‐PBI/Nafion composite membranes. Nonetheless, it had little effect on the thermal stability. 相似文献
7.
Sulfuric acid loaded polybenzimidazole (PBI) membranes were prepared with loading levels up to 10.58 (acid molecule per repeat unit of PBI) and characterized with Fourier transform infrared spectroscopy. Ionic conductivity of the PBI–H2SO4 membrane was found greater than that of the PBI–H3PO4 membrane. Through plane conductivity of a PBI–H2SO4 membrane with loading level 9.65 was >0.2 S cm–1 at 150 °C. However, the conductivity of PBI–H2SO4 membrane increased greatly with increasing relative humidity. Membrane electrode assemblies using PBI–H2SO4 membrane exhibited better power density performances with pre‐humidified H2 and air than that with none‐humidified gases. Polymer electrolyte membrane fuel cells with PBI–H2SO4 membrane in a single cell fixture demonstrated a peak power density >0.35 W cm–2 with H2 and air. 相似文献
8.
A two‐dimensional non‐isothermal model developed for a single intermediate temperature fuel cell with a phosphoric acid (PA) doped PBI membrane is developed. The model of the experimental cell incorporates the external heaters, and the body of the fuel cell. The catalyst layers were treated as spherical catalyst particles agglomerates with porous inter‐agglomerate space. The inter‐agglomerate space is filled with a mixture of electrolyte (hot PA) and PTFE. All the major transport phenomena are taken into account except the crossover of species through the membrane. This model was used to study the influence of two different geometries (along the channel direction and cross the channel direction) on performance. It became clear, through the performance analyses, that the predictions obtained by along the channel geometry did not represent the general performance trend, and therefore this geometry is not appropriate for fuel cell simulations. Results also indicate that the catalyst layer was not efficiently used, which leads to large temperature differences through the MEA. 相似文献
9.
For improving stability without sacrificing ionic conductivity, ionically cross‐linked proton conducting membranes are fabricated from Na+‐form sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) and H+‐formed sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Ionically acid‐base cross‐linking between sulfonic acid groups in SPPO and phthalazone groups in SPPESK impart the composite membranes the good miscibility and electrochemical performance. In particular, the composite membranes possess proton conductivity of 60–110 mS cm−1 at 30 °C. By controlling the protonation degree of SPPO within 40–100 %, the composite membranes with favorable cross‐linking degree are qualified for application in fuel cells. The maximum power density of the composite membrane reaches approximately 1100 mW cm−2 at the current density of 2800 mA cm−2 at 70 °C. 相似文献
10.
The present study uses the radiation‐induced grafting method and applies it onto poly(ethylene‐alt‐tetrafluoroethylene) (ETFE) for the synthesis of proton‐exchange membranes by using monomers 4‐vinyl pyridine (4VP), 2‐vinyl pyridine (2VP), N‐vinyl‐2‐pyrrolidone (NVP) followed by phosphoric acid doping. Phosphoric acid that provides Grotthuss mechanism in proton mobilization is used to transform the graft copolymers to a high temperature membrane state. Resultant proton‐exchange membranes are verified with their proton conductivity, water uptake, mechanical and thermal properties, and phosphorous distribution as ex situ characterization. Our most important finding as a novelty in literature is that ETFE‐g‐P4VP phosphoric acid doped proton‐exchange membranes exhibit proton conductivities as 66 mS cm–1 at 130 °C, 53 mS cm–1 at 120 °C, 45 mS cm–1 at 80 °C at RH 100% and 55 mS cm–1 at 130 °C, 40 mS cm–1 at 120 °C, 35 mS cm–1 at 80 °C at dry conditions. Moreover, ETFE‐g‐P4VP membranes still conserves the mechanical properties, i.e., tensile strength up to 48 MPa. ETFE‐g‐P4VP membranes were tested in PEMFC at 80, 100, and 120 °C and RH <2% and exhibit promising performance as an alternative to commercial Nafion® membranes. The single cell testing performance of ETFE‐g‐P4VP membranes is presented for the first time in literature in our study. 相似文献
11.
Fine particles of a solid proton conductor Sb0.2Sn0.8P2O7 were incorporated in PBI‐H3PO4 membranes with 20 wt.%. In SEM figures, the Sb0.2Sn0.8P2O7 particles exhibited even and uniform distribution in the PBI‐Sb0.2Sn0.8P2O7 membrane. Influences of the immersing time and the concentration of H3PO4 solution for immersion on H3PO4 loading level were investigated. H3PO4 loading level was found an important factor on membrane conductivity. Incorporation of Sb0.2Sn0.8P2O7 in the PBI‐H3PO4 membrane resulted in greater membrane conductivities. In the single cell tests, the peak power density of the membrane electrode assembly (MEA) with the PBI‐Sb0.2Sn0.8P2O7‐H3PO4 membrane was also greater than that of a MEA with PBI‐H3PO4 membrane. One MEA using PBI‐Sb0.2Sn0.8P2O7‐H3PO4 membrane achieved a peak power density of 0.67 W cm–2 at 175 °C with H2/O2 and exhibited satisfactory stability. 相似文献
12.
T. Z. Fu J. Liu Z. M. Cui J. Ni G. Zhang H. B. Yu C. J. Zhao Y. H. Shi H. Na W. Xing 《Fuel Cells》2009,9(5):570-578
The sulphonated phenol novolac (PNBS) which was used as a curing agent of epoxy was synthesised from phenol novolac (PN) and 1, 4‐butane sultone and confirmed by FTIR and 1H NMR. The degree of sulphonation (DS) in PNBS was calculated by 1H NMR. The semi‐IPN membranes composed of sulphonated tetramethyl poly(ether ether ketone) (STMPEEK) (the value of ion exchange capacity is 2.01 meq g–1), epoxy (TMBP) and PNBS were successfully prepared. The semi‐IPN membranes showed high thermal properties which were measured by differential scanning calorimeter (DSC) and thermogravimetric analyses (TGA). With the introduction of the cross‐linked TMBP/PNBS, the mechanical properties, dimensional stability, methanol resistance and oxidative stability of the membranes were improved in comparison to the pristine STMPEEK membrane. Although the proton conductivities of the semi‐IPN membranes were lower than those of the pristine STMPEEK membrane, the higher selectivity defined as the ratio of the proton conductivity to methanol permeability was obtained from the STMPEEK/TMBP/PNBS‐14 semi‐IPN membrane. The results indicated that the semi‐IPN membranes could be promising candidates for usage as proton exchange membranes in direct methanol fuel cells (DMFCs). 相似文献
13.
This review focuses on various synthesis strategies of anion‐exchange membranes (AEMs) for fuel cells, diverse methodologies of AEM‐forming, together with relationship between structures and properties. AEMs are discussed from seven categories, including (1) AEMs derived from Nafion precursors with sulfonyl fluoride groups, which display excellent stability and well‐developed morphologies that similar to Nafion, but has potentially high costs. (2) AEMs prepared by grafting technologies, such as chemical grafting technique, ATRP technique, plasma grafting technique and radiation grafting technique. (3) AEMs based on functionalized commercial polymers, including PVA, SEBS, CPP, PEEK, PES, PEI, PPO, and so on. (4) AEMs prepared by newly‐synthesized polymers, in which the most interesting approach is to synthesize alkaline multi‐block copolymers with enough long hydrophilic/hydrophobic blocks. (5) AEMs containing heterogeneous composition, which mainly prepared by blending and sol‐gel methods, reinforced or pore‐filling AEMs and IPN or s‐IPN. (6) AEMs with functional groups different from quaternary ammonium, which includes the studies of new type of AEMs with highly chemical stability in alkaline solution. (7) Hybrid membranes combining AEM with PEM, in which new configuration results in different performances. At last, conclusions and perspectives for the future researches of AEMs are presented. 相似文献
14.
Sulfonated poly(arylene ether ketone) (SPAEK) possessing the pendant carboxylic acid groups was synthesized. The carboxylic acid groups of SPAEK were reacted with a cross‐linking reagent to prepare a cross‐linked membrane with a high ion exchange capacity (IEC), a high oxidative stability, and an excellent mechanical strength. The cross‐linking hindered the mobility of the polymer chains and thus strongly affected the water uptake and the methanol permeability of the membranes. Also, as the cross‐linker used in this study bore sulfonic acid groups, cross‐linking did not lead to a noticeable loss of the proton conductivity. The cross‐linked SPAEK membrane with 20% cross‐linking density, CSPAEK‐20% membrane, exhibited a high proton conductivity of 0.045 S cm–1 associated with a high IEC value of 1.78 mmol g–1 but a low methanol permeability of 4.3 × 10–7 cm2 s–1. The CSPAEK‐20% membrane also showed excellent cell performance and oxidation resistance. 相似文献
15.
Pyridine‐polybenzimidazole (PyPBI) films of different thickness (∼1.0–2.4 nm) are wrapped on the surfaces of multi‐walled carbon nanotubes (CNTs). To prepare Pt on PyPBI/CNT (Pt‐PyPBI/CNT) catalysts, Pt4+ ions are immobilized on these PyPBI wrapped CNTs (PyPBI/CNTs) via Lewis acid‐base coordination between Pt4+ and :N‐ of imidazole groups, followed by reducing Pt4+ to Pt nanoparticles. The influence of PyPBI film thickness on the Pt particle size, loading and electrochemical surface area, respectively, of Pt‐PyPBI/CNTs is investigated. Fuel cell performances of the PBI/H3PO4 based membrane electrode assemblies (MEAs) prepared from these Pt‐PyPBI/CNT catalysts are also evaluated at 160 °C with unhumidified H2/O2 gases. Among the catalysts, the Pt‐PyPBI/CNT catalyst with a PyPBI film thickness of ∼1.6 nm (which is around half of the Pt particle size), a Pt loading of ∼44 wt.%, and a Pt particle size of ∼3.3 nm exhibits the best fuel cell performance. 相似文献
16.
A series of hybrid proton‐conducting membranes with an interpenetrating polymer network (IPN) structure was designed with the direct ethanol fuel cell (DEFC) application in mind. In these membranes, glutaraldehyde crosslinked poly(vinyl alcohol) (PVA) were interpenetrated with the copolymer of 2‐acrylamido‐2‐methyl‐propanesulphonic acid (AMPS) and 2‐hydroxyethyl methacrylate (HEMA) crosslinked by poly(ethylene glycol) dimethacrylate (PEGDMA). Silica from the in situ sol–gel hydrolysis of tetraethyl orthosilicate (TEOS) was uniformly dispersed in the polymer matrix. The membranes fabricated as such had ion exchange capacities of 0.84–1.43 meq g–1 and proton conductivities of 0.02–0.11 S cm–1. The membranes exhibited significantly lower fuel permeabilities than that of Nafion. In a manner totally unlike Nafion, fuel permeabilities were lower at higher fuel concentrations, and were lower in ethanol than methanol solutions. These behaviours are all relatable to the unique swelling characteristics of PVA (no swelling in ethanol, partial swelling in methanol and extensive swelling in water) and to the fuel blocking and swelling suppression properties of silica particles. The membranes are promising for DEFC applications since a high concentration of fuel may be used to reduce fuel crossover and to improve the anode kinetics for a resultant increase in both the energy and power densities of the fuel cell. 相似文献
17.
This study is an evaluation of the effectiveness of the flexography printing process for manufacturing catalyst‐coated membranes (CCMs) for use in proton exchange membrane fuel cells (PEMFCs). Flexography is a maskless and continuous process that is used in large‐scale production with water‐based inks to reduce the cost of production of PEMFC components. Unfortunately, water has undesirable effects on the Nafion® membrane: water wets the membrane surface poorly and causes the membrane to bulge outwards significantly. Membrane printability was improved by pre‐treating membrane samples by water immersion for short periods (<2 min). This pre‐treatment was used to control the membrane deformation before printing to limit the impact of the ink transfer. Water and ink drop deposition experiments were performed to estimate the liquid‐air‐Nafion® apparent contact angle and the locally induced membrane deformation. Despite the short immersion times used in the tests, the immersion pre‐treatment appeared to induce structural modifications that enhanced both the membrane wettability and the dimensional stability. Flexography printability tests were performed on these treated membranes and showed that the dimensional instability of the Nafion® membrane was the critical parameter for limiting the ink transfer. The immersion pre‐treatment improved the printability of the Nafion® membranes, which were used to fabricate cathodes that were tested in an operational fuel cell. 相似文献
18.
Novel composites for fuel cells were prepared via two different methods using a radiation grafted membrane, prepared from poly(ethylene‐alt‐tetrafluoroethylene) (ETFE) and styrene, and commercial Nafion®112 as the substrates. The first method was based on chemical polymerisation of pyrrole (Py) on the membrane followed by platinum (Pt) deposition by chemical reduction. The second method was based on direct deposition of Pt on the membrane by several steps of initial composite formation and surface electrodeposition. Polypyrrole (PPy) was coated as a layer only on the surface of the membrane. The thickness of PPy layer, proton conductivity of the composites and Pt loading could be controlled with Py polymerisation time. Moreover, the deposition of Pt on the surface as the granular particles was achieved by the first method while Pt deposition occurred as the aggregates of particles on the surface of the membrane by the second method which yielded wavy and rough surfaces. The first method offered a simple, quick, reproducible and effective procedure, yet some of the Pt particles peeled off from the surface of the composites. The second method required complex, multistep and tedious procedure with a high amount of Pt precursor, while Pt particles were more stable in this case. 相似文献
19.
The development of low cost alkaline anion solid exchange membranes requires high ionic conductivity, low liquid uptake, strong mechanical properties and chemical stability. PVA/PSSA blends cross‐linked with glutaraldehyde and decorated with titanium dioxide nanoparticles introduce advantages relative to the pristine membrane of PVA and PVA/PVP membranes due to their improved electrical response and low methanol uptake/ swelling ratio allowing their use in alkaline direct methanol fuel cells. 相似文献
20.
M. Michel J. Bour J. Petersen C. Arnoult F. Ettingshausen C. Roth D. Ruch 《Fuel Cells》2010,10(6):932-937
In this study, we explored thin films of nanofibrous functionalised conducting plasma polyaniline (pPANI) with platinum deposited by an atmospheric plasma deposition process for the potential design of anodes for hydrogen fuel cell applications. We observed that the incorporation of such a polymer, characterised by both electronic and ionic conductivity, associated with a catalyst in a 3D porous network, could lead to an increased probability of the three‐phase contact to occur. In this context, aniline was mixed with functionalised platinum nanoparticles and used as the precursor. The role of these functionalised nanoparticles was not only to act as the catalyst for fuel cell purposes, but also as nucleation sites promoting the formation of the nanofibrous pPANI thin film during the plasma polymerisation. The morphology of the thin film was analysed by scanning electron microscopy and the efficiency, in terms of energy conversion, was assessed in a single fuel cell test bench. 相似文献