首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.  相似文献   

2.
A 3D microstructure model is used to investigate the effect of the thickness of the solid oxide fuel cell (SOFC) electrode on its performance. The 3D microstructure model, which is based on 3D Monte Carlo packing of spherical particles of different types, can be used to handle different particle sizes and generate a heterogeneous network of the composite materials from which a range of microstructural properties can be calculated, including phase volume fraction, percolation and three phase boundary (TPB) length. The electrode model can also be used to perform transport and electrochemical modelling such that the performance of the synthetic electrode can be predicted. The dependence of the active electrode thickness, i.e. the region of the anode, which is electrochemically active, on operating over-potential, electrode composition and particle size is observed. Operating the electrode at an over-potential of above 200 mV results in a decrease in the active thickness with increasing over-potential. Reducing the particle size dramatically enhances the percolating TPB density and thus the performance of the electrode at smaller thicknesses; a smaller active thickness is found with electrodes made of smaller particles. Distributions of local current generation throughout the electrode reveal the heterogeneity of the 3D microstructure at the electrode/electrolyte interface and the dominant current generation in the vicinity of this interface. The active electrode thickness predicted using the model ranges from 5 μm to 15 μm, which corresponds well to many experimental observations, supporting the use of our 3D microstructure model for the investigation of SOFC electrode related phenomena.  相似文献   

3.
A flat tubular segmented‐in‐series (SIS) solid oxide fuel cell (SOFC) was fabricated using decalcomania paper. The performance of a two‐cell stack with 4.5‐mm‐wide electrodes was investigated in a temperature range of 650–800 °C. The decalcomania paper allowed fabrication of the SIS‐SOFC on all sides of the flat tubular support and achieve an effective electrode area larger than that obtained using typical SOFC fabrication techniques such as screen printing or slurry coating. SEM observations revealed that each component layer was flat, uniformly thick, and well adherent to adjacent layers. Measured values of open circuit voltages were very close to the theoretical values; confirming that the processing technique utilizing decalcomania paper is suitable for SIS‐SOFC fabrication. The power densities of the two‐cell‐stack were 437.4, 375.6, 324.6, and 257.1 mW cm−2 at 800, 750, 700 and 650 °C, respectively.  相似文献   

4.
《Ceramics International》2017,43(10):7736-7742
SiC has excellent structural and mechanical properties and also has excellent properties related to membrane performance. High processing temperature increases the costs of SiC products and thus limits their use. In this study, we fabricated SiC-based ceramic support layers using a clay-bonding technique. Kaolin, a well-known clay, was used as a binder for silicon-carbide particles. Three different SiC powders were used on the basis of particle size for fabrication by the extrusion method, which converts powders into flat tubular form. The resultant supports are sintered at 1300–1500 °C in air and evaluated for their structural properties, pore characteristics and permeability. It is evident from the study that we can produce a support layer with small-sized SiC powder that has a high open porosity and high strength with a smaller pore size and lower permeability in comparison with layers produced with a large-sized starting SiC powder. Additionally, the produced support layer could be used as a stand-alone membrane for 1 µm particles.  相似文献   

5.
6.
An artificial neural network (ANN) and a genetic algorithm (GA) are employed to model and optimize cell parameters to improve the performance of singular, intermediate‐temperature, solid oxide fuel cells (IT‐SOFCs). The ANN model uses a feed‐forward neural network with an error back‐propagation algorithm. The ANN is trained using experimental data as a black‐box without using physical models. The developed model is able to predict the performance of the SOFC. An optimization algorithm is utilized to select the optimal SOFC parameters. The optimal values of four cell parameters (anode support thickness, anode support porosity, electrolyte thickness, and functional layer cathode thickness) are determined by using the GA under different conditions. The results show that these optimum cell parameters deliver the highest maximum power density under different constraints on the anode support thickness, porosity, and electrolyte thickness.  相似文献   

7.
A mathematical model was developed to investigate the coupled transport and electrochemical reactions in a nickel‐yttrial‐stablized zirconia (Ni‐YSZ) anode for use in solid oxide fuel cells (SOFCs). The modeling results were consistent with experimental data from the literature. Comparison between conventional non‐graded (uniform random composites) and two types of functionally graded electrodes (FGE), namely particle size graded and porosity graded SOFC anodes were conducted to evaluate the potential of FGE for SOFC. Improved performance of both types of FGE was observed due to reduced mass transport resistance and increased volumetric reactive surface area close to the electrode‐electrolyte interface. It was found that the particle size graded SOFC anode showed the best performance. This paper demonstrates that the SOFC performance could be enhanced by modifying the microstructures of the electrodes. The results presented in this paper provide a better understanding of the working mechanisms of SOFC electrodes and could serve as an important reference for design optimizations.  相似文献   

8.
A tubular segmented‐in‐series (SIS) solid oxide fuel cell (SOFC) sub module for intermediate temperature (700–800 °C) operation was fabricated and operated in this study. For this purpose, we fabricated porous ceramic supports of 3 YSZ through an extrusion process and analyzed the basic properties of the ceramic support, such as visible microstructure, porosity, and mechanical strength, respectively. After that, we fabricated a tubular SIS SOFC single cell by using dip coating and vacuum slurry coating method in the case of electrode and electrolyte, and obtained at 800 °C a performance of about 400 mW cm–2. To make a sub module for tubular SIS SOFC, ten tubular SIS SOFC single cells with an effective electrode area of 1.1 cm2 were coated onto the surface of the prepared ceramic support and were connected in series by using Ag + glass interconnect between each single cell. The ten‐cell sub module of tubular SIS SOFC showed in 3% humidified H2 and air at 800 °C a maximum power of ca. 390 mW cm–2.  相似文献   

9.
The composite anode and cathode of solid oxide fuel cells (SOFC) are modelled as sintered mixtures of electrolyte and electrocatalyst particles. A particle packing is first created numerically by the discrete element method (DEM) from a loose packing of 40 000 spherical, monosized, homogeneously mixed, and randomly positioned particles. Once the microstructure is sintered numerically, the effective electrode conductivity is determined by discretization of the particle packing into a resistance network. Each particle contact is characteristic of a bond resistance that depends on contact geometry and particle properties. The network, which typically consists of 120 000 bond resistances in total, is solved using Kirchhoff's current law. Distributions of local current densities and particle potentials are then performed. We investigate how electrode performance depends on parameters such as electrode composition, thickness, density and intrinsic material conductivities that are temperature dependent. The simulations show that the best electrode performance is obtained for compositions close to the percolation threshold of the electronic conductor. Depending on particle conductivities, the electrode performance is a function of its thickness. Additionally, DEM simulations generate useful microstructural information such as: coordination numbers, triple phase boundary length and percolation thresholds.  相似文献   

10.
A co‐extrusion technique was employed to fabricate a novel dual layer NiO/NiO‐YSZ hollow fiber (HF) precursor which was then co‐sintered at 1,400 °C and reduced at 700 °C to form, respectively, a meshed porous inner Ni current collector and outer Ni‐YSZ anode layers for SOFC applications. The inner thin and highly porous “mesh‐like” pure Ni layer of approximately 50 μm in thickness functions as a current collector in micro‐tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni‐YSZ layer of 260 μm acts as an anode, providing also major mechanical strength to the dual‐layer HF. Achieved morphology consisted of short finger‐like voids originating from the inner lumen of the HF, and a sponge‐like structure filling most of the Ni‐YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 × 105 S m–1. This result is significantly higher than previous reported results on single layer Ni‐YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual‐layer HF design as a new and highly efficient way of collecting current from the lumen of micro‐tubular SOFC.  相似文献   

11.
In the present work, 12‐layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)‐yttria stabilised zirconia (YSZ), electrode layer LSM‐gadolinia‐doped cerium oxide (CGO) and electrolyte layer CGO were fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 °C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing route, porous, flat and crack‐free electrochemical reactors were successfully achieved. The produced electrochemical reactors have the potential application in the removal of NOx and soot particles emitted from the diesel engines.  相似文献   

12.
Image analysis and quantification were performed on porous scaffolds for building SOFC cathodes using the two types of YSZ powders. The two powders (U1 and U2) showed different particle size distribution and sinterability at 1300?°C. AC impedance on symmetrical cells was used to evaluate the performance of the electrode impregnated with 35-wt.% La0.8Sr0.2FeO3. For example, at 700?°C, the electrode from U2 powder shows a polarization resistance (Rp) of 0.21?Ω?cm2, and series resistance (Rs) of 8.5?Ω?cm2 for an YSZ electrolyte of 2-mm thickness, lower than the electrode from U1 powder (0.25?Ω?cm2 for Rp and 10?Ω?cm2 for Rs) does. The quantitative study on image of the sintered scaffold indicates that U2 powder is better at producing architecture of high porosity or long triple phase boundary (TPB), which is attributed as the reason for the higher performance of the LSF-impregnated electrode.  相似文献   

13.
In this paper, the computational parameters for a 3D model for solid oxide fuel cell (SOFC) electrodes developed to link the microstructure of the electrode to its performance are investigated. The 3D microstructure model, which is based on Monte Carlo packing of spherical particles of different types, can be used to handle different particle sizes and generate a heterogeneous network of the composite materials. Once formed, the synthetic electrodes are discretized into voxels (small cubes) of equal sizes from which a range of microstructural properties can be calculated, including phase volume fraction, percolation and three-phase boundary (TPB) length. Transport phenomena and electrochemical reactions taking place within the electrode are modelled so that the performance of the synthetic electrode can be predicted. The degree of microstructure discretization required to obtain reliable microstructural analysis is found to be related to the particle sizes used for generating the structure; the particle diameter should be at least 20–40 times greater than the edge length of a voxel. The structure should also contain at least 253 discrete volumes which are called volume-of-fluid (VOF) units for the purpose of transport and electrochemical modelling. To adequately represent the electrode microstructure, the characterized volume of the electrode should be equivalent to a cube having a minimum length of 7.5 times the particle diameter. Using the modelling approach, the impacts of microstructural parameters on the electrochemical performance of the electrodes are illustrated on synthetic electrodes.  相似文献   

14.
Achieving high performance from a solid oxide fuel cell (SOFC) requires optimal design based on parametric analysis. In this paper, design parameters, including anode support porosity, thicknesses of electrolyte, anode support, and cathode functional layers of a single, intermediate temperature, anode‐supported planar SOFC, are analyzed. The response surface methodology (RSM) technique based on an artificial neural network (ANN) model is used. The effects of the cell parameters on its performance are calculated to determine the significant design factors and interaction effects. The obtained optimum parameters are adopted to manufacture the single units of an SOFC through tape casting and screen‐printing processes. The cell is tested and its electrochemical characteristics, which show a satisfactory performance, are discussed. The measured maximum power density (MPD) of the fabricated SOFC displays a promising performance of 1.39 W cm–2. The manufacturing process planned to fabricate the SOFC can be used for industrial production purposes.  相似文献   

15.
M. Ni 《化学工程与技术》2009,32(10):1484-1493
A three‐dimensional computational fluid dynamics model was developed to study the performance of a planar solid oxide fuel cell (SOFC). The governing equations were solved with the finite volume method. The model was validated by comparing the simulation results with data from literature. Parametric simulations were performed to investigate the coupled heat/mass transfer and electrochemical reactions in a planar SOFC. Different from previous two‐dimensional studies the present three‐dimensional analyses revealed that the current density was higher at the center along the flow channel while lower under the interconnect ribs, due to slower diffusion of gas species under the ribs. The effects of inlet gas flow rate and electrode porosity on SOFC performance were examined as well. The analyses provide a better understanding of the working mechanisms of SOFCs. The model can serve as a useful tool for SOFC design optimization.  相似文献   

16.
《Ceramics International》2017,43(15):12138-12144
Solution combustion (SC) is a versatile technique for the preparation of composite anode powders of solid oxide fuel cell (SOFC). In the present investigation, NiO/GDC ceramic powders, an anode material for intermediate temperature solid oxide fuel cell (IT-SOFC), has been prepared by SC method by using oxalyl di hydrazide (ODH) and hexamethylnetetramine (HMT) as fuels. Reaction with ODH as fuel resulted in the powders consisting of small particle and crystallite size, whereas, powders prepared using HMT as fuel consisted of agglomerated particles which led to the porous structures in the fabricated anode layers. Through combined microstructural analysis, porosity measurements and conductivity measurements, it was inferred that powders prepared using ODH as fuel are ideal for anode functional layers. On the other hand, powders prepared using HMT as fuels are best suited for anode substrate fabrication.  相似文献   

17.
Y. K. Zeng  P. Fan  X. Zhang  C. Fu  J. Li  G. Li 《Fuel Cells》2014,14(1):123-134
This paper investigates the size effects of the gas diffusion layer underneath the channel rib on the performance of a planar solid oxide fuel cell (SOFC). Based on 3‐dimensional numerical simulations, the sensitivities of the electrical performance parameters (Nernst potential and current density) and the thermal performance parameters (heat generation and temperature) are examined as a function of variations in the channel rib width and anode thickness. The sensitivity values of the Nernst potential and current density are calculated to guide the design of a cell in a planar SOFC. In particular, the changes in ohmic losses for the interconnectors and anode are analyzed as a function of the variations of the channel rib width and anode thickness. The variations of the mole fractions of hydrogen, oxygen, and water in the active areas of the channel rib and the channel are presented, which provide sensitivity profiles for gas diffusion with respect to changes in the anode thickness.  相似文献   

18.
Yttria Stabilised Zirconia (YSZ) is commonly used as an oxygen sensor and an oxygen pump in automotive and industrial applications, and is a choice electrolyte for Solid Oxide Fuel Cell (SOFC) technology. YSZ is also a major component of the SOFC electrodes, and is commonly mixed with 50% volume NiO to create a Ni/YSZ cermet anode. In both the adsorption and fuel cell applications homogeneous control of the porosity of YZS is important. Templating methods provide well ordered macroporous structures and have been used to prepare ordered, macroporous YSZ from metal nitrate precursors using polystyrene spheres of 1 μm as templates. Ordered three-dimensional structures were synthesised and the effects of sintering temperatures of 650–1400 °C on pore size, particle size and pore wall thickness were examined. Ordered porosity was maintained at all temperatures, though some structural degradation and sintering was observed at 1400 °C. This study demonstrated that templated porosity is maintained well above the conventional sintering temperature of the electrodes, and higher than previous studies reported. The stability of these structures at high temperatures makes this fabrication technique a promising alternative to conventional methods of synthesising porous materials.  相似文献   

19.
Metal‐supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni‐YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni‐YSZ based anodes are used in metal supported SOFC, elements from the active anode layer may inter‐diffuse with the metallic support during sintering. This work illustrates how the inter‐diffusion problem can be circumvented by using an alternative anode design based on porous and electronically conducting layers, into which electrocatalytically active materials are infiltrated after sintering. The paper presents the electrochemical performance and durability of the novel planar metal‐supported SOFC design. The electrode performance on symmetrical cells has also been evaluated. The novel cell and anode design shows a promising performance and durability at a broad range of temperatures and is especially suitable for intermediate temperature operation at around 650 °C.  相似文献   

20.
The performance of solid oxide cells (SOCs) heavily relies on the population of three‐phase boundaries (TPBs) in the composite electrodes. In this study, SOC composite electrodes are described by percolating binary particle aggregates that are constructed from random loose packing models and classical sintering theories. Summed perimeters of the sintering necks represent the total TPB lengths. A case study has been carried out on lanthanum strontium manganite (LSM)–yttria‐stabilized zirconia (YSZ) composite electrodes. By employing three‐dimensional data that are converted from relevant two‐dimensional data, the TPB length of baseline LSM–YSZ electrodes investigated in this study is 35.4 μm μm–3. The parametric and sensitivity analyses show the changes of TPB lengths in functions of the weight fraction of powders, particle size and particle size ratio of powders, void fraction of electrodes, and density of materials. In the case of baseline LSM–YSZ electrodes, proper electrode design and optimization would result in 2–3 times of the enlargement of TPBs. Technical guidelines on the design and optimization of SOC composite electrodes are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号