首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel PtPd/C nanocrystals catalyst with truncated‐octahedral structure has been successfully prepared by ethylene glycol reduction to induce anisotropic growth in an isotropic medium by adding a small amount of Fe3+ species. Its structure, composition, and morphology are characterized by X‐ray diffraction, transmission electron microscopy, and scanning transmission electron microscopy‐energy dispersive spectroscopy elemental maps, respectively. The electrochemical measurements demonstrate that the highly dispersed and uniform PtPd/C nanocrystals have excellent poisoning tolerance, significantly higher electrocatalytic activity and durability for the methanol oxidation, as compared to solid solution PtPd/C and Pt/C catalysts. This may be ascribed to the stepped atoms and dangling bonds, which served as active sites for breaking chemical bonds during oxidation–reduction reaction; the high density of preferred crystal planes of (111) facets greatly enhanced the oxidation of poisonous residues during reaction.  相似文献   

2.
Methanol electro‐oxidation is investigated at graphite electrodes modified with various platinum and nickel nano‐particle deposits using cyclic voltammetry. The modified electrodes are prepared by the simultaneous electrodeposition of metals from their salt solutions using potentiostatic and galvanostatic techniques. They show enhanced catalytic activity towards methanol oxidation in KOH solution. The catalytic activity of platinum nano‐particles is found to be significantly affected by the presence of relatively small amounts of nickel deposits. A comparison is made between the electrocatalytic activity of Pt/C and (Pt‐Ni)/C electrodes. The results show that the methanol electro‐oxidation current increases with an increase in the nickel content. In particular, the highest catalytic activity is achieved for platinum to nickel deposits of 95%:5% (wt.‐%), in other cases the catalytic activity decreases. It is found that Ni enhances the catalytic activity of Pt by increasing the number of active sites, as well as through an electron donation process from Ni to Pt. This process takes place once the nickel hydroxide (Ni(OH)2)/nickel oxy‐hydroxide (NiOOH) transformation begins. The effect of the methanol concentration on the methanol oxidation reaction is investigated. The order of reaction, with respect to methanol, at the modified (Pt‐Ni)/C electrode is found to be 0.5.  相似文献   

3.
Z. Yan  Y. Gu  W. Wei  Z. Jiang  J. Xie  P. K. Shen 《Fuel Cells》2015,15(2):256-261
Tungsten carbide (WC) particles loading on hollow carbon spheres (HCS) have been synthesized by using ammonium metatungstate as W source, glucose as carbon source, P123 as dispersant and polystyrene sphere as template. The typical WC‐HCS composite has the WC particle sizes of 5–20 nm, specific surface area of 445 m2 g−1, pore volume of 0.24 cm3 g−1 and hollow spherical structure. The above structures of WC‐HCS favor dispersion of Pd particles and mass transfer. Therefore, the Pd/WC‐HCS electrocatalyst has 4.6 times higher peak current density and 130 mV more negative onset potential than that of Pd/C for ethanol oxidation in alkaline solution. The mass transfer property of WC‐HCS (due to structure effect) and promotion effect of WC on Pd are believed to be the origins of the excellent performances.  相似文献   

4.
H. Wang  R. Luo  S. Ji  V. Linkov  R. Wang 《Fuel Cells》2014,14(1):42-48
A palygorskite/carbon heterogeneous nanocomposite, a unique hybrid of palygorskite and carbon, was prepared and designed as an electrocatalyst support material for PtRuIr nanoparticles and evaluated for methanol electrooxidation. X‐ray diffraction and transmission electron microscopy results showed that PtRuIr nanoparticles were well‐dispersed on the composite support with highly dispersed tiny crystal alloy phase on the surface of PtRuIr amorphous alloy. X‐ray photoelectron spectroscopy results indicated that the formation of Ru and Ir oxides on the surface of the PtRuIr nanoparticles. The electrochemical results show that the palygorskite hybridized carbon used as electrocatalysts support can improve the electrocatalytic activity towards methanol oxidation and CO tolerance.  相似文献   

5.
Z. Yan  J. Xie  Y. Fang  M. Chen  X. Wei  X. Lü 《Fuel Cells》2014,14(2):291-295
Tungsten oxide (WO3) nanocrystals with the diameter <5 nm supported on porous carbonized resin (denoted as C‐WO3) are synthesized. The WO3 precursors are dispersed at ion level through ion exchange route, then reduced to WO3 nanocrystals. Pt nanoparticles are loaded on the porous C‐WO3 matrix (denoted as Pt/C‐WO3) and used as electrocatalyst in fuel cell for alcohol oxidation, in which WO3 is found efficient promotion effect on Pt electrocatalyst in the electrochemical activity and stability. Thereinto, Pt/C‐WO3 gives 1.63 times higher current densities than the commercial Pt/C (TKK) for methanol oxidation at the same Pt loadings. Moreover, Pt/C‐WO3 electrocatalyst shows excellent properties in mass transfer than Pt/C (TKK). The present method can be readily scaled up for the production of other nanomaterials as well as WO3.  相似文献   

6.
G. Zhong  H. Wang  H. Yu  F. Peng 《Fuel Cells》2013,13(3):387-391
Carbon‐encapsulated cobalt‐tungsten carbides (CoWC@C) were synthesized by reduction and carbonization method and used as the electrocatalyst for oxygen reduction reaction (ORR) in direct methanol fuel cells. The as‐prepared samples were characterized by transmission electron microscope, X‐ray diffraction, and X‐ray photoelectron spectroscopy. The results show that CoWC@C consists of outer layer carbon and internal Co3W3C, WC, and Co. The cyclic voltammetry results show that CoWC@C has high ORR activity, long‐term durability, and good methanol‐tolerant performance. It is revealed that the main active phase for ORR of CoWC@C is Co3W3C, and the outer layer carbon plays the role in improving the durability of the catalyst.  相似文献   

7.
Graphene nanosheets (GS) were formed by the thermal‐expansion method. Large micropores about 1–2 nm were produced, which might provide abundant anchor sites for fixing catalyst. Platinum nanoparticles (NPs) supported on exfoliated GS (Pt/GS) were synthesized through an improved impregnation approach and mixture gas (5% H2 in N2) reduction. SEM and TEM images indicated the simple and clean method can effectively synthesize Pt with uniform dispersion and small size (below 3 nm) on the 2D specific and stratiform GS. The different amounts of Pt loaded on carbon carriers have been investigated respectively to evaluate the preferable electrocatalyst. Experimental results showed that Pt/GS of 20 wt.% initiated CO oxidation at the lowest onset potential in comparison with the commercial Pt/C (JM), indicating a higher CO tolerance of Pt/GS catalysts. In addition, Pt/GS of 20 wt.% exhibited enhanced electrocatalytic activity and high durability towards methanol oxidation. The high performance is exclusively attributed to synergistic effects of exfoliated GS and ultrafine size Pt NPs. Combining a melt‐diffusion strategy with the effective reduction of Pt precursors by the hydrogen gas, this present method is easy to scale up and possesses a significant potential for synthesizing anode electro‐catalyst of direct methanol fuel cells.  相似文献   

8.
Carbon nanotubes (CNTs) were shortened from 5 to 15 μm to ca. 200 nm using ball milling with ethanol as the milling aid agent, and a platinum catalyst with these shortened carbon nanotubes (SCNTs) as the support was prepared by a high‐pressure colloidal method. It was found that this catalyst with SCNTs showed much higher activity than a platinum catalyst with normal CNTs as support; for methanol anodic oxidation, the activity of the Pt/SCNTs was 50% higher than that of the Pt/CNTs, and the Pt/SCNTs also showed higher activity for the cathodic reduction of oxygen. The Pt/SCNTs were characterised by X‐ray diffraction scanning and transmission electron microscropy. It is suggested that the significant performance enhancement when SCNTs are used as support might result from the generation of new surfaces and defects, the opening of closed nanotubes in the process of milling, higher platinum dispersion on the shortened nanotubes and the interaction of platinum nanoparticles with the SCNTs.  相似文献   

9.
Ultraporous Pd nanocrystals for electrocatalysis applications were fabricated using a direct electrodeposition method on three differing carbon supports: flexible carbon fiber paper (CFP), and CFP modified with either graphene oxide nanosheets or their chemically reduced forms using a simple spray coating technique. The electrocatalytic activity of these electrodes was investigated for the direct electro‐oxidation reaction of methanol in alkaline media. Pd deposited on the CFP modified with reduced graphene oxide (rGO) has excellent poisoning tolerance to carbonaceous species and a significantly better catalytic activity toward methanol oxidation than the other two catalyst support materials. Pd/rGO/CFP in 2.0 M CH3OH in 2.0 M NaOH yields a specific current density of 241 mAmg–1 cm–2 determined at the anodic oxidation peak. It is believed that the collaborative effects due to the three‐dimensional ultraporous Pd nanocrystals and fast electron transfer owing to high conductivity of rGO nanosheets play an important role in enhancing the catalytic performance of Pd/rGO/CFP toward methanol oxidation in alkali media.  相似文献   

10.
Oxidation of toluene has been investigated over supported platinum as well as over a variety metal oxide (M x O y ) catalysts dispersed on high surface area γ-Al2O3. Catalysts were characterized with respect to their specific surface area (BET), metal dispersion (selective chemisorption of CO), phase composition and M x O y crystallite size (XRD) and reducibility (H2-TPR). Catalytic performance for the title reaction was investigated in the temperature range of 100–500 °C, using a feed composition consisting of 0.1% toluene in air. For Pt/M x O y catalysts, it has been found that catalytic performance depends on the nature of the support, with Pt/CeO2 being the most active catalyst at low temperatures. The intrinsic reaction rate per surface platinum atom does not depend on Pt loading (0.5–5 wt%), at least for Pt/Al2O3. Reducible metal oxides, such as ceria, are active for the title reaction and catalytic performance is improved significantly with increase of specific surface area (SSA). However, the intrinsic reaction rate per unit surface area is invariant with SSA. Dispersion of M x O y on high surface area inert supports, such as Al2O3, results in materials with relatively high catalytic activity, which seems to correlate well with the reducibility of metal oxides. Catalytic performance of M x O y /Al2O3 catalysts can be optimized by proper selection of M x O y loading. Best performing catalysts of this series include 60% MnO, 90% CeO2 and 5% CuO on Al2O3 which, under the present experimental conditions, are able to completely convert toluene toward CO2 at temperatures lower than 350 °C. Dispersion of Pt on M x O y /Al2O3 catalysts improves significantly the catalytic performance of irreducible M x O y but does not alter appreciably the activity of reducible M x O y /Al2O3 catalysts.  相似文献   

11.
T. Zhou  H. Wang  S. Ji  H. Feng  R. Wang 《Fuel Cells》2014,14(2):296-302
Carbon materials derived from biomass are economical and simple. Here, a okara‐derived carbon (ODC) was prepared by carbonized cheap and abundant okara at 800 °C in N2 atmosphere. A high degree of graphitization, mesoporous structure and large specific surface area of ODC were proved by Raman spectroscopy, nitrogen adsorption–desorption isotherms, X‐ray diffraction, Fourier transform infrared spectra and scanning electron microscope. The ODC can be used as support of platinum nanoparticles, and the catalytic performance for methanol electro‐oxidation of its was measured by cyclic voltammetry and CO stripping voltammetry. The results showed that Pt/ODC catalyst had higher electrocatalytic activity and the resistance to poisoning ability toward methanol electrooxidation than the Pt/C catalyst prepared under the same conditions.  相似文献   

12.
An effective anode electrocatalyst in direct methanol fuel cell (DMFC) should have high activity for the oxidation of methanol and the decomposition of water, while remaining stable under the relatively harsh anode environment. Although the Pt/Ru bimetallic alloy is currently the most effective anode electrocatalyst, both Pt and Ru are expensive due to limited supplies and both are susceptible to CO poisoning. Consequently, the discovery of less expensive and more CO tolerant alternatives to the Pt/Ru catalysts would help facilitate the commercialization of DMFC. In this paper we will discuss the possibility of using tungsten carbides (WC) and Pt-modified WC as potential anode electrocatalysts in DMFC. We will provide an overview of our recent work, using a combined approach of fundamental surface science studies and in-situ electrochemical evaluation of the activity and stability of tungsten carbides. We will demonstrate the feasibility to bridge fundamental surface science studies on single crystals with the electrochemical evaluation on polycrystalline WC films. We will also discuss the synergistic effect by supporting low coverages of Pt on the WC substrate to further enhance the electrochemical performance of WC.  相似文献   

13.
C. Zhou  F. Peng  H. Wang  H. Yu  J. Yang  X. Fu 《Fuel Cells》2011,11(2):301-308
RuO2‐MnO2 complex supported by multi‐wall carbon nanotubes (CNTs) was firstly synthesised by the oxidation–reduction precipitation of RuCl3 and KMnO4 in one step. Then Pt was loaded onto the obtained RuO2‐MnO2/CNTs to fabricate a novel anodic catalyst Pt/RuO2‐MnO2/CNTs for direct methanol fuel cells (DMFCs). The catalyst was characterised by transmission electron microscopy (TEM), X‐ray diffraction (XRD), temperature programmed reduction (TPR), X‐ray photoelectron spectroscopy (XPS) and BET specific surface areas (BET). Pt nanoparticles were found uniformly dispersed on the surface of CNTs, with the average diameter of about 2.0 nm. The activities of methanol and CO electrocatalytic oxidation were analysed, and the reaction mechanism of methanol electro‐oxidation on Pt/RuO2‐MnO2/CNTs catalyst was discussed. The MnO2 in the catalysts improves the proton conductivity and electrochemical active surface area (EAS) for the catalysts. RuO2 improves the CO oxidation activity and Pt dispersion. CNTs provide effectively electron channels. Thus, the Pt/RuO2‐MnO2/CNTs catalyst has high utilisation of the noble metal Pt, high CO oxidation ability and excellent methanol electro‐oxidation activity, being an outstanding anode catalyst for DMFC.  相似文献   

14.
用循环伏安法在玻碳电极上电聚合导电高分子聚苯胺用于附载Pt,提高了Pt的分散度。发现甲醇在Pt/PAN/GC电极和Pt/GC电极上均能自发解离出强吸附中间体CO,证实聚苯胺膜的存在有利于提高电极对甲醇的电催化氧化活性,CO在Pt/PAN/GC电极上的氧化峰电流明显高于Pt/GC电极。通过比较甲醇的电催化氧化活性可知,Pt/PAN/GC电极催化氧化甲醇的峰电流为58.68mA/cm^2和50.00mA/cm^2,是Pt/GC电极氧化峰电流的1.6倍和1.7倍。  相似文献   

15.
A reactor for catalytically oxidizing liquid methanol has been developed for supplying heat to an automotive reformer. In the tests presented in this paper we show that it is possible to catalytically combust liquid methanol by dispersing the methanol and air by a nebulizer over the catalysts. In the experiments we tested several base and noble metals and found that either platinum or palladium was required at the ignition zone. The tests also showed that it was possible to achieve complete combustion when only 25 % of the catalyst bed contained a noble metal.  相似文献   

16.
The kinetics and mechanism of methanol adsorption and oxidation on real Pt/Ru (1:1) electrodes were investigated. In model electrode systems, the addition of supporting proton-conducting electrolyte is necessary. Therefore, the influence of sulphuric acid on the kinetics of methanol adsorption and oxidation was also investigated. It turns out that the steady state adsorption is not significantly affected by the addition of sulphuric acid. However, if sulphuric acid is used as an additional electrolyte, the rate of methanol adsorption and steady state oxidation decreases, whereas the active surface of the catalyst increases. The mechanism of methanol oxidation is not affected by the addition of sulphuric acid. At low potentials, the adsorption of methanol is found to be much faster than its oxidation. Hence, the oxidation of the methanol intermediate species is believed to be the rate-determining step under these conditions. This result is confirmed by apparent orders of reaction of about 0.5. At potentials in the range of 0.3–0.5 V, a mixed activation-adsorption control is supposed, whereas at potentials more positive than 0.5 V, the adsorption of methanol is probably the rds. This is supported by the apparent reaction orders and apparent activation energies of methanol oxidation.  相似文献   

17.
A novel aerosol-assisted approach for the synthesis of a nanostructured bimetallic Pt–Ru network is demonstrated in which monodisperse silica is used as a template. This approach allows for simplified synthesis and short synthesis times. The nanostructured Pt–Ru network is characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and BET surface area measurements. Cyclic voltammetry (CV) shows enhanced electrocatalytic currents which we believe is due to improved mass transfer as a result of the nanostructured morphology.  相似文献   

18.
用于甲烷选择性氧化反应制甲醇的膜催化技术   总被引:5,自引:0,他引:5  
研究了将甲烷选择性地一次氧化制取甲醇的膜催化技术。采用ZrO2-Y2O3陶瓷膜,在较温和的反应条件下(常压,460℃左右),可以将甲烷选择性地一次氧化成为甲醇。  相似文献   

19.
The high‐quality carbon supported Pd nanoparticles (Pd/C) composites have wide applications in catalysis. In this work, we demonstrate an efficient diethylene glycol (DEG) reduction method for the synthesis of a Pd/C catalyst with high dispersion and small particle size. During the synthesis, no surfactants and halogen ions are introduced in the reaction system, and DEG efficiently acts as solvent and reducing agent, which results in a “clean” Pd surface. Meanwhile, compared to the classic ethylene glycol (EG) reduction method, the present DEG reduction method can produce the high‐quality Pd/C composites. As a result, the as‐prepared Pd/C electrocatalyst exhibits a large electrochemical active surface area and good electrocatalytic performance for the methanol oxidation reaction in an alkaline media, due to the high dispersion and small particle size. This result indicates the as‐prepared Pd/C electrocatalyst has potential applications in alkaline direct methanol fuel cells.  相似文献   

20.
J. Wu  F. Hu  P. K. Shen  C. M. Li  Z. Wei 《Fuel Cells》2010,10(1):106-110
For the first time, intermittent microwave heating (IMH) is a one‐step technique applied to pretreat the multiwalled carbon nanotubes (MWCNTs) in H2O2 solution. The approach does not require washing and filtration of the sample, thus significantly reducing the loss of the material and treatment time. The IMH associated with H2O2 treatment, is optimised to fabricate efficient support for Pt electrocatalyst. Both as‐received and treated MWCNTs are used as Pt electrocatalyst supports, respectively. It demonstrates that the treated MWCNTs supported Pt has much better electrocatalytic performance than that of untreated MWCNTs supported Pt. The Pt on MWCNTs treated with an IMH irradiation mode in 10 s on and 20 s off for 5 times, shows the best performance for methanol oxidation. This work provides a novel approach to simply and economically fabricate an efficient MWCNT support at a large scale, for high performance Pt electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号