首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new polymer electrolyte membrane prepared by radiation grafting of vinyltoluene into poly(ethylene‐co‐tetrafluoroethylene) (ETFE) film and subsequent sulfonation was developed for application in fuel cells. The effect of grafting condition on the degree of grafting was investigated in detail. Results indicated that the degree of grafting can be controlled over a wide range. The grafted films were sulfonated in a chlorosulfonic acid solution to obtain the polymer electrolyte membranes, which were characterized with respect to their use in fuel cells. It is concluded that the substituted methyl group on the vinyltoluene can improve the chemical stability of the resulting membranes, and the crosslinked ETFE‐g‐poly(vinyltoluene‐co‐divinylbenzene) membranes can be proposed for the future development of alternative low‐cost and high‐performance membranes for fuel cells. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2661–2667, 2006  相似文献   

2.
In this study the fluoropolymers, poly(ethylene‐co‐tetrafluoroethylene) (ETFE) and poly(vinylidene fluoride) (PVDF) films, together with the radiation‐induced crosslinked polytetrafluoroethylene (cPTFE) film were compared on the basis of their preparation and properties of radiation‐grafted polymer electrolyte membranes. The polymer electrolyte membranes were prepared by radiation grafting of styrene into the base films and subsequent sulfonation. The proton conductivity and chemical stability of the three types of membranes with a similar ion exchange capacity (IEC) near 1.0 mmol/g were investigated and are discussed in detail. Although the ETFE‐based polymer electrolyte membrane was relatively more stable, its proton conductivity was lower than those of the PVDF‐ and cPTFE‐based membranes. On the other hand, the cPTFE‐based membrane showed a significantly higher proton conductivity, but its chemical stability was shorter than that of the ETFE‐based membrane. It is considered that the difference in the preparation and properties of the polymer electrolyte membranes was due to the difference in the degree of crystallinity as well as in the chemical structure of the fluoropolymer base films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1966–1972, 2007  相似文献   

3.
Free‐radical melt‐grafting of the dual‐monomer systems glycidyl methacrylate–styrene (GMA‐St) and hydroxyethyl methacrylate–styrene (HEMA‐St) onto polypropylene (PP) has been studied using a single‐screw extruder. For single monomer grafting systems, degradation of PP was unavoidable and deterioration of the mechanical properties of the grafted PP subsequently occurred because of β‐scission of PP chains during the free‐radical melt‐grafting process. However, for the dual‐monomer systems, it is shown that the addition of styrene as a comonomer can significantly enhance the GMA or HEMA grafting levels on PP and reduce the extent of β‐scission of PP backbone. It has been found that the grafting degree of dual‐monomer melt‐grafted PP, such as PP‐g‐(GMA‐co‐St) or PP‐g‐(HEMA‐co‐St), is about quadruple that of single‐monomer grafted PP for the same monomer and dicumyl peroxide concentrations. Moreover, the melt flow rate of the dual‐monomer grafted PP is smaller than that of the unmodified PP. Hence, PP not only was endowed with higher polarity, but also kept its good mechanical properties. © 2000 Society of Chemical Industry  相似文献   

4.
The mechanical stability is, in addition to thermal and chemical stability, a primary requirement of polymer electrolyte membranes in fuel cells. In this study, the impact of grafting parameters and preparation steps on stress–strain properties of ETFE‐based proton conducting membranes, prepared by radiation‐induced grafting and subsequent sulphonation, was studied. No significant change in the mechanical properties of the ETFE base film was observed below an irradiation dose of 50 kGy. It was shown that the elongation at break decreases with increasing both the crosslinker concentration and graft level (GL). However, the tensile strength was positively affected by the crosslinker concentration. Yield strength and modulus of elasticity are almost unaffected by the introduction of crosslinker. Interestingly, yield strength and modulus of elasticity increase gradually with GL without noticeable change of the inherent crystallinity of grafted films. The most brittle membranes are obtained via the combination of high GL and crosslinker concentration. The optimised ETFE‐based membrane (GL of ∼25%, 5% DVB v/v), shows mechanical properties superior to those of Nafion® 112 membrane. The obtained results were correlated qualitatively to the other ex situ properties, including crystallinity, thermal properties and water uptake of the grafted membranes.  相似文献   

5.
Radiation‐induced graft copolymerization is a powerful technique to prepare a grafted chain with the desired properties pending onto the trunk material. In this work, a polyethylene hollow‐fiber membrane was modified by this technique. The monomers glycidyl methacrylate (GMA) and N,N‐dimethylacrylamide (DMAA) were cografted onto macroporous polyethylene hollow fiber with a grafting degree in the order of 200%. DMAA/GMA cografted membranes were compared to GMA grafted ones for the introduction of an amino acid as a specific ligand. Grafted membranes with a copolymer composition between 0 and 2 DMAA/GMA were prepared by soaking them in solutions of different mixtures of monomers. Copolymers were characterized by FTIR and their composition was estimated by the analysis of the ratio of carbonyl signals. Copolymers with a higher proportion of DMAA showed improved hydrophilic properties and higher conversion rates of epoxy groups on phenyalanine ligands than those of the GMA grafted ones. However, copolymers with a DMAA/GMA ratio higher than 1 showed a detrimental effect on the pure water flux. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1646–1653, 2003  相似文献   

6.
A normalized and universally applicable calibration function for the Fourier‐transformed infrared (FTIR) quantification of the glycidyl methacrylate (GMA) grafting yield in polymers of known compositions having ethylene block sequences was established. The 1H nuclear magnetic resonance (1H‐NMR) spectroscopy results achieved on different GMA‐grafted ethylene/propylene/diene rubber (EPDM‐g‐GMA) and ethylene/GMA copolymers were correlated to their FTIR data to calibrate the relative determination of the FTIR method. Both direct and indirect standardization approaches were followed and evaluated. The calibration deduced was used to investigate the free radical grafting reaction of GMA on EPDM rubber in the melt phase. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2616–2624, 1999  相似文献   

7.
The melt grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE) in the presence of free radical initiators was investigated in the batch mixer. The graft content was determined with the titration and FTIR spectroscopy. The graft content increased with the increase of peroxide and initially introduced GMA concentration. Increase of the grafted GMA content resulted in decrease of the melt index. Interestingly, there was a sudden drop of GMA grafting content with the reaction time. It is assumed that depolymerization of GMA have taken place over the ceiling temperature. The crystallinity of the prepared glycidyl methacrylate grafted high density polyethylene (HDPE‐g‐GMA) was determined by the measurement of the heat of fusion. GMA grafted site acted as defect and crystallinity of the HDPE‐g‐GMA decreased with the increase of grafting reaction. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

9.
Radiation‐induced simultaneous grafting of styrene onto polytetrafluoroethylene (PTFE) films and the subsequent sulfonation in the chlorosulfonic acid/dichloroethane were investigated. The effects of the main radiation grafting conditions, such as the type of solvents, irradiation dose, dose rate, the styrene concentrations, etc., on the degree of grafting (DOG) were studied. To elucidate the influence of both the grafting and sulfonation conditions on the properties of the PTFE‐g‐polystyrene‐sulfonic acid (PSSA) membranes, the sulfonation conditions, including the sulfonation temperature and the concentration of the ClSO3H with respect to the DOG, were systematically evaluated. The grafted and sulfonated membranes were characterized by FTIR–ATR spectra, ion‐exchange capacity (IEC), water uptake, thickness measurement, etc. The as‐prepared PTFE‐g‐PSSA membranes in this work showed a good combination of a high IEC (0.85–2.75 meq g?1), acceptable water uptake (8.86–56.9 wt %), low thickness, and volume expansion and/or contraction. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1415–1428, 2006  相似文献   

10.
A new antithrombosis dialytic membrane with a hydrophilic–hydrophobic microphase structure was prepared by preirradiation grafting of β‐hydroxyethyl methacrylate (HEMA) and styrene (St) onto ethylene–vinyl acetate (EVA). The influence of some effects, such as preirradiation dose, dose rate, grafting reaction temperature, reaction time, and monomer component, on the degree of grafting was determined, and the properties of the grafted films were investigated. Compared with the conventional EVA‐grafted hydrophilic monomer, the EVA films grafted with HEMA and St have superior antithrombogenicity; the antithrombogenicity and permeability of EVA‐g‐(HEMA‐co‐St) were 30 and 20 times higher than those of the ungrafted films, respectively, when the volume ratio (HEMA versus St) was about 7:3. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1321–1327, 2000  相似文献   

11.
Proton exchange membranes were prepared by simultaneous radiation grafting of styrene onto polytetrafluoroethylene (PTFE) films at room temperature and subsequent sulfonation by chlorosulfonic acid. A series of grafted films with degree of grafting ranging from 0.947% to 35.4% were obtained. The effect of styrene concentration on the grafting yield was investigated and the maximum value was obtained at a monomer concentration of 70‐vol%. The structure of PTFE‐graft‐polystyrene sulfonic acid membranes was studied by infrared spectroscopy. The membrane properties, such as water uptake, ion exchange capacity, swelling performance and ionic resistance, were studied as functions of the degree of grafting. The thermal and chemical stability of the sulfonic acid membranes was also investigated. The membrane properties were found to depend on the degree of grafting and the amorphous character of the membrane structure, and the better membrane properties were obtained at a degree of grafting in the range 12–21%. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
Proton-exchange membranes are required to exhibit chemical, mechanical, and thermal stability for fuel cell applications. The present investigation has been carried out to explore the thermal behavior of poly(ethylene-alt-tetrafluoroethylene) (ETFE)-based proton-conducting membranes, both uncrosslinked and crosslinked, prepared by radiation grafting and subsequent sulfonation. The influence of preparation steps (irradiation, grafting, sulfonation, crosslinking) on the thermal degradation, crystallinity, and melting behavior of membranes with varying degree of grafting was examined. ETFE base film and grafted films were studied as the reference materials. Furthermore, poly(tetrafluoroethylene-co-hexafluoropropylene)-based grafted films and membranes were investigated as well for comparison. Membrane preparation steps, degree of grafting, crosslinking, type of base polymer have considerable influence on the thermal properties of membranes. The crystallinity of the films decreases slightly by grafting, while a significant decrease was observed after sulfonation. For instance, crystallinity decreased from 37% (pristine ETFE) to 36% (uncrosslinked grafted film) and 23% (uncrosslinked ETFE-based membrane). On the other hand, the melting temperature of the base polymer was almost unaffected by irradiation and grafting. The crosslinked ETFE-based membranes exhibit a slightly higher melting temperature (262.5°C) than their corresponding grafted films (261.3°C) and the base film (260.6°C). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
To improve the performance of nylon 4 membranes, this study attempts to utilize chemical initiation which induces different hydrophilicities vinyl monomers grafted onto nylon 4 membranes. Sodium styrene sulfonate, chloromethyl styrene, styrene, and glycidyl methacrylate were used as grafting monomers. The factors that affect the degree of grafting considered were chemical initiators, pH values, kinds and concentrations of monomers, reaction time, and temperatures. The mechanical strength and the transport properties of these chemical-initiated grafted nylon 4 membranes were also investigated. Both the water flux and the salt rejection of sodium styrene sulfonated-grafted membrane were increased significantly, compared to our previous paper,1 and the casein rejections of all of the four grafted nylon 4 membranes studied exceeded 90%. The quaternized nylon 4-g-poly(chloromethyl styrene) membranes were prepared and possessed high water uptake behavior and high transfer number (0.99) for electrodialysis. The sulfonating process was also applied to improve the hydrophilicity of nylon 4-g-poly(glycidyl methacrylate) membrane so that the water flux and the salt rejection were both increased.  相似文献   

14.
Surface of nylon membrane was modified by the graft copolymerization of glycidyl methacrylate (GMA) using persulfate and thiosulfate as redox initiator system. Effect of various reaction parameters such as initiator concentration, monomer concentration, polymerization time, and temperature on degree of grafting was also studied. Maximum grafting of 100% was achieved by using equimolar concentration (0.008M) of redox initiator and 0.5M of GMA monomer at 70°C in 60 min. Grafted nylon membranes with various graft levels of GMA were characterized by various techniques such as fourier transform infrared spectroscopy, thermo gravimetric analysis, and scanning electron microscopy. The GMA grafted nylon (NyM‐g‐GMA) membranes with different graft levels were evaluated as a support for immobilization of rabbit anti goat antibody (RAG IgG). Antibody (Ab) immobilized NyM‐g‐GMA membranes were evaluated using ELISA and Bradford protein estimation method. Nylon membrane with 60% graft level showed optimum immobilization of Ab at RAG IgG conc. of 0.625 μg/mL with low nonspecific binding. Maximum immobilization efficiency (I.E.%) of 56% was observed for membrane with 60% graft level at 50 μg/mL of RAG IgG in PBS (pH 7.4). Ab immobilized NyM‐g‐GMA discs were found to be stable up to 6 weeks at 4°C and 2 days at 37°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
This work explored the melt‐phase grafting of glycidyl methacrylate (GMA) onto polypropylene on a closely intermeshing corotating twin‐screw extruder (16‐mm screws, 40 : 1 length/diameter ratio). The modification of the base polypropylene to produce GMA‐grafted polypropylene was achieved via peroxide‐induced hydrogen abstraction from the polypropylene followed by the grafting of the GMA monomer or by the grafting of styrene followed by copolymerization with the GMA. In this study, both the position and order of the reactant addition were investigated as a route to improving graft yields and reducing side reactions (degradation). For the peroxide–GMA system, adding GMA to the melt before the peroxide resulted in significant improvements in the graft levels because of the improved dispersion of GMA in the melt. The addition of a comonomer (styrene) was explored as a second route to improving the graft yield. Although the addition of the comonomer led to a considerable rise in the level of grafted GMA, altering the order of the reactant addition was not found to contribute to an increase in the grafted GMA levels. However, variable levels of grafted styrene were achieved, and this may play an important role in the development of grafted polymers to suit specific needs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
:This study concerns the melt‐free radical grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE). We studied the effect of two initiators (tert‐butyl cumyl peroxide and di‐tert‐butyl peroxide) onto HDPE. Crosslinking of polymer was observed in the presence of 0.3 wt % tert‐butyl cumyl peroxide but not with 0.3 wt % di‐tert‐butyl peroxide. The grafting was carried out in a Brabender batch mixer at 190 °C. The grafting yield of GMA onto HDPE (determined by infrared spectrometry) is weak (<1 wt % for an initial concentration in monomer of 6 wt %). Moreover, it was noted that the degree of grafting did not vary with the concentration and the nature of peroxide used. To increase the grafting yield of GMA, we added to the HDPE/peroxide/GMA system an electron‐donating monomer, such as styrene. Adding this comonomer multiplied the rate of grafted GMA 3‐ or 4‐fold, resulting in a ratio [styrene]i/[GMA]i = 1 mol/mol with [GMA]i = 6 wt %. So, the copolymerization is favored compared with the homopolymerization. This kind of copolymer presenting reactive functions is very attractive in the field of compatibilizing immiscible polymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 581–590, 2001  相似文献   

17.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
This study concerns a comparative study of three crosslinkers, divinylbenzene (DVB), 1,2‐bis(p,p‐vinylphenyl)ethane (BVPE), and triallyl cyanurate (TAC) crosslinked poly(ethylene‐co‐tetrafluoroethylene) (ETFE)‐based radiation‐grafted membranes, which were prepared by radiation grafting of p‐methylstyrene onto ETFE films and subsequent sulfonation. The effect of the different types and contents of the crosslinkers on the grafting and sulfonation, and the properties such as water uptake, proton conductivity, and thermal/chemical stability of the resulting polymer electrolyte membranes were investigated in detail. Introducing crosslink structure into the radiation‐grafted membranes leads to a decrease in proton conductivity due to the decrease in water uptake. The thermal stability of the crosslinked radiation‐grafted membranes is also somewhat lower than that of the noncrosslinked one. However, the crosslinked radiation‐grafted membranes show significantly higher chemical stability characterized in the 3% H2O2 at 50°C. Among the three crosslinkers, the DVB shows a most pronounced efficiency on the crosslinking of the radiation‐grafted membranes, while the TAC has no significant influence; the BVPE is a mild and effective crosslinker, showing the moderate influence between the DVB and TAC crosslinkers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4565–4574, 2006  相似文献   

19.
The grafting of glycidyl methacrylate (GMA) onto linear low‐density polyethylene (LLDPE) was investigated. The grafting was performed by free‐radical grafting in the melt state in a twin‐screw extruder using an organic peroxide as initiator. The effect of initial GMA and peroxide concentration, styrene comonomer addition, as well as initial resin viscosity, on the final content in grafted moieties, unbound homopolymer, and unreacted monomer was assessed. The effect of process parameters such as flow rate, screw rotation speed, and barrel temperature was also investigated. Chemical composition was shown to be the main parameter for controlling grafting level and grafting efficiency. Grafting levels up to 1.8% and efficiency of 90% were reported even though in most conditions, the graft efficiency was severely decreased by the homopolymerization of GMA into polyGMA chains not bound to LLDPE. Finally, the effect of grafting level and the presence of unbound GMA‐based species on the efficiency GMA‐grafted LLDPE as adhesive between polyethylene and polyester were discussed. Good adhesion to poly(ethylene terephthalate) copolymer was found for low viscosity grafted polyethylene resins. A significant improvement in adhesive strength on polyester was observed when the molecular weight of the grafted LLDPE was increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3180–3191, 2004  相似文献   

20.
Photografting (λ > 300 nm) of N‐isopropylacrylamide (NIPAAm) and glycidyl methacrylate (GMA) binary monomers (NIPAAm/GMA) on low‐density polyethylene film (thickness = 30 μm) was investigated at 60°C using mixed solvent consisting of water and an organic solvent such as acetone. Xanthone was used as a photoinitiator by coating it on the film surfaces. A maximum percentage of grafting was observed at a certain concentration of acetone in the mixed solvent, which was commonly observed for both ratios of NIPAAm/GMA, 8/2 and 7/3. Based on the photografting of NIPAAm/GMA on xanthone‐coated film, monomer reactivity ratios of NIPAAm (r1) and GMA (r2) were calculated using the Fineman–Ross method. The values were 0.31 ± 0.1 and 4.8 ± 0.2 for the water solvent system, while they were 0.96 ± 0.1 and 4.9 ± 0.1 for the mixed solvent system. NIPAAm/GMA‐grafted films with a homogeneous distribution of grafted chains were formed by photografting using water and mixed solvents. The NIPAAm/GMA‐grafted films exhibited temperature‐responsive characters, whereas the grafted films showed a reversible change in the degree of swelling between 0 and 50°C, respectively. Epoxy groups in the grafted poly(NIPAAm/GMA) chains could be aminated with ethylenediamine in N,N′‐dimethylformamide at 70°C for 3 h. Complexes of the aminated NIPAAm/GMA‐grafted chains with cupric ion exhibited catalytic activity for the decomposition of hydrogen peroxide at 20 to 50°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2469–2475, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号