首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of polyanionic compounds, inhibitors of human immunodeficiency virus, was obtained from radical addition of mercapto acid or mercapto ester on a perallylated carbohydrate under UV irradiation with a catalytic amount of AIBN. Unlike the polyanions that we have previously prepared by polymerization reactions, the compounds are structurally well defined. Polyanions bearing 16 carboxylate groups showed a 50% inhibitory concentration (IC50) of 0.1-4.1 micrograms/mL against HIV-1 in MT-4 cells while not being toxic to the host cells at concentrations up to 125 micrograms/mL. The most potent polyanions also proved active against human cytomegalovirus at concentrations of 1-14 micrograms/mL. No activity was observed against any of the other viruses tested (i.e., herpes simplex virus, vesicular stomatitis virus, Sindbis, Semliki forest, parainfluenza-3, Junin, Tacaribe, Coxsackie B4, polio-1, reo-1, or vaccinia virus).  相似文献   

2.
A series of aminodiol inhibitors of human immunodeficiency virus type 1 (HIV-1) protease were identified by using an in vitro peptide cleavage assay. BMS 182,193, BMS 186,318, and BMS 187,071 protected cells against HIV-1, HIV-2, and simian immunodeficiency virus infections, with 50% effective doses ranging from 0.05 to 0.33 microM, while having no inhibitory effect on cells infected with unrelated viruses. These compounds were also effective in inhibiting p24 production in peripheral blood mononuclear cells infected with HIV-1 IIIB and against the zidovudine-resistant HIV-1 strain A018C. Time-of-addition studies indicated that BMS 182,193 could be added as late as 27 h after infection and still retain its antiviral activity. To directly show that the activity of these compounds in culture was due to inhibition of proteolytic cleavage, the levels of HIV-1 gag processing in chronically infected cells were monitored by Western blot (immunoblot) analysis. All compounds blocked the processing of p55 in a dose-dependent manner, with 50% effective doses of 0.4 to 2.4 microM. To examine the reversibility of BMS 186,318, chronically infected CEM-SS cells were treated with drug and virions purified from the culture medium. Incubation of HIV-1 particles in drug-free medium indicated that inhibition of p55 proteolysis was slowly reversible. The potent inhibition of HIV-1 during both acute and chronic infections indicates that these aminodiol compounds are effective anti-HIV-1 compounds.  相似文献   

3.
Transition state mimetic tripeptide human immunodeficiency virus (HIV) protease inhibitors containing allophenylnorstatine [(2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid] were synthesized and tested for activity against HIV in vitro. Two compounds, KNI-227 and KNI-272, which were highly potent against HIV protease with little inhibition of other aspartic proteases, showed the most potent activity against the infectivity and cytopathic effect of a wide spectrum of HIV strains. As tested in target CD4+ ATH8 cells, the 50% inhibitory concentrations of KNI-227 against HIV type 1 LAI (HIV-1LAI), HIV-1RF, HIV-1MN, and HIV-2ROD were 0.1, 0.02, 0.03, and 0.1 microM, respectively, while those of KNI-272 were 0.1, 0.02, 0.04, and 0.1 microM, respectively. Both agents completely blocked the replication of 3'-azido-2',3'-dideoxythymidine-sensitive and -insensitive clinical HIV-1 isolates at 0.08 microM as tested in target phytohemagglutinin-activated peripheral blood mononuclear cells. The ratios of 50% cytotoxic concentrations to 50% inhibitory concentrations for KNI-227 and KNI-272 were approximately 2,500 and > 4,000, respectively, as assessed in peripheral blood mononuclear cells. Both compounds blocked the posttranslational cleavage of the p55 precursor protein to generate the mature p24 Gag protein in stably HIV-1-infected cells. The n-octanol-water partition coefficients of KNI-227 and KNI-272 were high, with log Po/w values of 3.79 and 3.56, respectively. Degradation of KNI-227 and KNI-272 in the presence of pepsin (1 mg/ml, pH 2.2) at 37 degrees C for 24 h was negligible. Current data warrant further careful investigations toward possible clinical application of these two novel compounds.  相似文献   

4.
5.
6.
7.
8.
9.
Seventeen lichen acids comprising despides, depsidones, and their synthetic derivatives have been examined for their inhibitory activity against HIV-1 integrase, and two pharmacophores associated with inhibition of this enzyme have been identified. A search of the NCI 3D database of approximately 200,000 structures yielded some 800 compounds which contain one or the other pharmacophore. Forty-two of these compounds were assayed for HIV-1 integrase inhibition, and of these, 27 had inhibitory IC50 values of less than 100 microM; 15 were below 50 microM. Several of these compounds were also examined for their activity against HIV-2 integrase and mammalian topoisomerase I.  相似文献   

10.
Alignment of the available human immunodeficiency virus type 1 (HIV-1) viral DNA termini [U5 and U3 long terminal repeats (LTRs)] shows a high degree of conservation and the presence of a stretch of five or six consecutive adenine and thymine (AT) sequences approximately 10 nucleotides away from each LTR end. A series of AT-selective minor-groove binders, including distamycin and bisdistamycins, bisnetropsins, novel lexitropsins, and the classic monomeric DNA binders Hoechst 33258, 4'-diamino-2-phenylindole, pentamidine, berenil, spermine, and spermidine, were tested for their inhibitory activities against HIV-1 integrase (IN). Although netropsin, distamycin, and all other monomeric DNA binders showed weak activities in the range of 50-200 microM, some of the polyamides, bisdistamycins, and lexitropsins were remarkably active at nanomolar concentrations. Bisdistamycins were 200 times less potent when the conserved AAAAT stretch present in the U5 LTR was replaced with GGGGG, consistent with the preferred binding of these drugs to AT sequences. DNase I footprinting of the U5 LTR further demonstrated the selectivity of these bisdistamycins for the conserved AT sequence. The tested compounds were more potent in Mg+2 than in Mn+2 and inhibited IN50-212 deletion mutant in disintegration assays and the formation of IN/DNA complexes. The lexitropsins also were active against HIV-2 IN. Some of the synthetic polyamides exhibited significant antiviral activity. Taken together, these data suggest that selective targeting of the U5 and U3 ends of the HIV-1 LTRs can inhibit IN function. Polyamides might represent new leads for the development of antiviral agents against acquired immune deficiency syndrome.  相似文献   

11.
Phenylethylthiazolylthiourea (PETT) derivatives have been identified as a new series of non-nucleoside inhibitors of HIV-1 RT. Structure-activity relationship studies of this class of compounds resulted in the identification of N-[2-(2-pyridyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea hydrochloride (trovirdine; LY300046.HCl) as a highly potent anti-HIV-1 agent. Trovirdine is currently in phase one clinical trials for potential use in the treatment of AIDS. Extension of these structure-activity relationship studies to identify additional compounds in this series with improved properties is ongoing. A part of this work is described here. Replacement of the two aromatic moieties of the PETT compounds by various substituted or unsubstituted heteroaromatic rings was investigated. In addition, the effects of multiple substitution in the phenyl ring were also studied. The antiviral activities were determined on wild-type and constructed mutants of HIV-1 RT and on wild-type HIV-1 and mutant viruses derived thereof, Ile100 and Cys181, in cell culture assays. Some selected compounds were determined on double-mutant viruses, HIV-1 (Ile 100/Asn103) and HIV-1 (Ile100/Cys181). A number of highly potent analogs were synthesized. These compounds displayed IC50's against wild-type RT between 0.6 and 5 nM. In cell culture, these agents inhibited wild-type HIV-1 with ED50's between 1 and 5 nM in MT-4 cells. In addition, these derivatives inhibited mutant HIV-1 RT (Ile 100) with IC50's between 20 and 50 nM and mutant HIV-1 RT (Cys 181) with IC50's between 4 and 10 nM, and in cell culture they inhibited mutant HIV-1 (Ile100) with ED50's between 9 and 100 nM and mutant HIV-1 (Cys181) with ED50's between 3 and 20 nM.  相似文献   

12.
13.
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors are a promising class of antiretroviral agents that compromise enzymatic function through substrate mimicry. The in vitro susceptibility of a panel of HIV-1 clinical isolates demonstrating various drug resistance phenotypes to combinations of the HIV-1 protease inhibitors saquinavir and indinavir was determined. Antiviral effect was assessed by an HIV-1 p24 antigen reduction assay in phytohemagglutinin-stimulated peripheral blood mononuclear cells after harvesting of cell-free supernatant fluids at peak antigen production (days 4-7). Drug interactions were determined by median-dose-effect analysis, with the combination index (CI) calculated at several inhibitory concentrations (IC50, IC75, IC90, IC95, IC99). The interactive effects ranged from synergy at low efficacy doses to antagonism at higher doses against a pan-susceptible clinical isolate of HIV-1. Against a zidovudine-resistant isolate as well as a multidrug-resistant isolate, the combination of saquinavir and indinavir demonstrated antagonism at all doses.  相似文献   

14.
15.
Integration of a cDNA copy of the human immunodeficiency virus (HIV) genome is mediated by an HIV-1-encoded enzyme, integrase (IN), and is required for productive infection of CD4+ lymphocytes. It had been shown that 3,5-dicaffeoylquinic acid and two analogues were potent and selective inhibitors of HIV-1 IN in vitro. To determine whether the inhibition of IN by dicaffeoylquinic acids was limited to the 3,5 substitution, 3,4-, 4,5-, and 1,5-dicaffeoylquinic acids were tested for inhibition of HIV-1 replication in tissue culture and inhibition of HIV-1 IN in vitro. All of the dicaffeoylquinic acids were found to inhibit HIV-1 replication at concentrations ranging from 1 to 6 microM in T cell lines, whereas their toxic concentrations in the same cell lines were > 120 microM. In addition, the compounds inhibited HIV-1 IN in vitro at submicromolar concentrations. Molecular modeling of these ligands with the core catalytic domain of IN indicated an energetically favorable reaction, with the most potent inhibitors filling a groove within the predicted catalytic site of IN. The calculated change in internal free energy of the ligand/IN complex correlated with the ability of the compounds to inhibit HIV-1 IN in vitro. These results indicate that the dicaffeoylquinic acids as a class are potent and selective inhibitors of HIV-1 IN and form important lead compounds for HIV drug discovery.  相似文献   

16.
The active human immunodeficiency virus type 1 (HIV-1) protease has a homodimeric structure, the subunits are connected by an 'interface' beta-sheet formed by the NH2- and COOH-terminal amino acid segments. Short peptides derived from these segments are able to inhibit the protease activity in the range of micromolar IC50 values. We have further improved the inhibitory power of such peptides by computer modelling. The best inhibitor, the palmitoyl-blocked peptide Pam-Thr-Val-Ser-Tyr-Glu-Leu, has an IC50 value of less than 1 microM. Some of the peptides also showed very good inhibition of the HIV-2 protease. The C-terminal segment of the HIV-1 matrix protein, Acetyl-Gln-Val-Ser-Gln-Asn-Tyr, also inhibits HIV-1 protease. Kinetic studies confirmed the 'dissociative' mechanism of inhibition by the peptides. Depending on the peptide structure and ionic strength, both dimerization inhibition and competitive inhibition were observed, as well as synergistic effects between competitive inhibitors and interface peptides.  相似文献   

17.
Protease inhibitors are currently the most effective antiviral agents against human immunodeficiency virus type 1 (HIV-1). In this study we determined the effect of four HIV-1 protease inhibitors on human T cell leukemia virus type 1 (HTLV-I). Rhesus monkey cells infected with HTLV-I were treated with different concentrations of indinavir, saquinavir, ritonavir, or nelfinavir. The effect of these inhibitors was monitored through their effect on the processing efficiency of the viral Gag protein in cells, the natural substrate for the viral protease. These inhibitors failed to block processing of HTLV-I Gag. To confirm these findings, human cells were cotransfected with plasmids encoding infectious copies of HIV-1 and HTLV-I, and the cells were subsequently treated with these same HIV-1 protease inhibitors. At concentrations between 5 and 50 times the IC50 for inhibition of HIV-1 replication, inhibition of HIV-1 Gag cleavage was apparent. In contrast, no effect on HTLV-I Gag processing was seen. At higher concentrations, HIV-1 Gag processing was essentially completely inhibited whereas HTLV-I Gag cleavage was still unaffected. Thus, these inhibitors are not effective inhibitors of HTLV-I Gag processing. Sequence alignments of the HIV-1 and HTLV-I viral proteases and processing sites suggest that the active site of the HTLV-I protease may have subtle differences in substrate recognition compared with the HIV-1 protease.  相似文献   

18.
Gag gene mutants of human immunodeficiency virus type 1 (HIV-1) were analyzed for their potentials of inhibiting the replication of wild-type (wt) HIV-2, the second AIDS virus, in a single-round of viral replication. Of twenty-two HIV-1 gag mutants examined, seven were found to efficiently interfere with the replication of wt HIV-2. Some mutants, which can suppress the replication of wt HIV-1, did not show this inhibitory effect. These mutants were defective at the late phase of viral replication. A mutant designated NL-C1a was demonstrated to be very effective against the replication of HIV-1 and HIV-2 in monocytic cells as well as in lymphocytic cells.  相似文献   

19.
20.
Demethylation of colchiceinamide (2) and its analogues (3-10) afforded a novel class of mammalian DNA topoisomerase II inhibitors (2a-10a) without displaying tubulin inhibitory activity. All target compounds inhibited the catalytic activity of topoisomerase II at drug concentrations at 100 microM. An in vitro cytotoxicity assay indicated that compounds 3a and 8a were strong and tissue-selective cytotoxic agents against the MCF-7 breast cancer cell line (IC50 = 0.36 and 0.48 microgram/mL, respectively) and the CAKI-1 renal cancer cell line (IC50 = 0.72 and 0.96 microgram/mL, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号