首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As part of a national pool funded study 208 on pavement subgrade performance, 12 full-scale test sections (four soil types and three moisture contents) were constructed and tested under the heavy vehicle simulator (HVS) loading. This paper presents the HVS results on two of the four soils tested: AASHTO Class A-2-4 and A-4 soils, respectively. From the results, it was found that the pavement subgrade performance is a function of soil type, moisture content, and applied stress condition. Additionally, this paper also evaluated the current mechanistic-empirical pavement design guide (MEPDG) subgrade rutting (permanent strain) model through comparing with the actual measurements under the HVS loading. It was found that the MEPDG subgrade permanent strain model needs further improvement, and that a single performance model may not be universally applicable to different subgrade soil types. Consequently, a new permanent strain model for each soil type was developed in this paper, based on the HVS results, and that yielded better predictions. With further validation and field calibration, the proposed models offer promising potential to accurately predict rutting behavior of these two soils.  相似文献   

2.
The Specific Pavement Study–1 pavement test section on US281 in south Texas comprise the largest Strategic Highway Research Program experimental site in the United States. The project was opened to traffic in 1997, and performance has been poor. Three of these test sections developed deep rutting within 1 year. Their surfaces were milled to restore ride quality. Three years after construction, 14 of the sections had 10 mm or more rutting. A forensic study was initiated by the Texas Department of Transportation to identify the cause of the problem. Nondestructive testing was conducted with both the falling weight deflector and ground penetrating radar. No structural problems were detected with either device, both indicating that the base and subbase layers were strong. A field investigation was initiated; the original plan was to cut nine trenches, however, after four trenches were cut, the problematic layer was identified and the trenching operation was terminated. Dynamic cone penetrometer, stiffness gauge, seismic pavement analyzer, and nuclear density gauge tests were then conducted on top of the base and subgrade layers. The trench profiles indicated that the rutting was coming primarily from the top 50-mm (2-inch) asphalt-concrete layer. Asphalt cores were taken from both rutted and nonrutted sections and bag samples of the base were tested in laboratory. The binder was recovered, and the asphalt content and penetration, aggregate gradation, and type were determined. The cause of the problem was traced to a change in aggregate screening, and also an excess of asphalt in the top layer.  相似文献   

3.
Results are presented from a study to evaluate the relative influence of design and site factors on the performance of in-service flexible pavements. The data are from the SPS-1 experiment of the Long-Term Pavement Performance program. This experiment was designed to investigate the effects of HMA surface layer thickness, base type, base thickness, and drainage on the performance of new flexible pavements constructed in different site conditions (subgrade type and climate). Base type was found to be the most critical design factor affecting fatigue cracking, roughness (IRI), and longitudinal cracking (wheel path). The best performance was shown by pavement sections with asphalt treated bases (ATB). This effect should be interpreted in light of the fact that an ATB effectively means a thicker HMA layer. Drainage and base type, when combined, also play an important role in improving performance, especially in terms of fatigue and longitudinal cracking. Base thickness has only secondary effects on performance, mainly in the case of roughness and rutting. In addition, climatic conditions were found to have a significant effect on flexible pavement performance. Wheel path longitudinal cracking and transverse cracking seem to be associated with a wet-freeze environment, while nonwheel path longitudinal cracking seems to be dominant in a freeze climate. In general, pavements built on fine-grained soils have shown the worst performance, especially in terms of roughness. Although most of the findings from this study support the existing understanding of pavement performance, they also provide an overview of the interactions between design and site factors and new insights for achieving better long-term pavement performance.  相似文献   

4.
Lack of proper pavement base and subgrade compaction leads to premature failures that account for millions of dollars in damages. Controlled low-strength material (CLSM) concrete was introduced in this study as pavement base material near a manhole where proper compaction is unachievable. Rut-resistant stone matrix asphalt was placed on top of the CLSM as a wearing surface layer. Dynamic cone penetrometer (DCP) testing was used to monitor CLSM construction. One day after placing, the CLSM gained sufficient strength to support construction traffic. Further, DCP results indicated that the CLSM possessed uniform characteristics of concrete that could improve the load-bearing capacity and serviceability of the pavement near the manhole. After 18 months of heavy truck traffic, maximum rutting was 5?mm, well below the failure criteria of 12.5?mm. Based on cost and performance, CLSM concrete has the potential to improve problematic areas in pavement.  相似文献   

5.
Performance of Geosynthetic-Reinforced Asphalt Pavements   总被引:1,自引:0,他引:1  
This paper describes the performance of geosynthetic-reinforced asphalt pavement under monotonic, cyclic, and dynamic loading conditions. The study differed from current practice where geosynthetics are typically used as separators or to improve the bearing capacity of the subgrade. A geogrid layer was installed at the bottom of the asphalt concrete layer, along the asphalt-subgrade interface, to function as tensile reinforcement. The load was applied to the surface of the asphalt concrete layer using a rigid rectangular footing under plane strain conditions. The strains that developed along the geogrid over time and at different load levels were monitored. Two different types of geogrid reinforcements were used, and their restraining effects on the layered system were compared. The study showed that geosynthetic reinforcement increased the stiffness and bearing capacity of the asphalt concrete pavement. Under dynamic loading, the life of the asphalt concrete layer was prolonged in the presence of geosynthetic reinforcement. The stiffness of the geogrid and its interlocking with the asphalt concrete contributed to the restraining effect.  相似文献   

6.
Field Testing of Stabilized Soil   总被引:1,自引:0,他引:1  
Remediation of a Superfund site in Stratford, Conn., involved stabilization of the subgrade with portland cement. Part of the remediation site was to be used as a parking area. The stabilized soil was to be covered with natural base∕subbase course materials and capped with an asphalt concrete cover. During the course of the remediation, a base-course layer could not be placed prior to the onset of winter. A field study was conducted to quantify any changes in the mechanical properties of the open stabilized subgrade subjected to freeze-thaw cycling during the winter of 1996–97. Field evaluation was conducted with pavement industry tools: the Clegg impact hammer and the dynamic cone penetrometer. Evaluation results show the viability of the Clegg hammer as an instrument for quality assurance and also show that there can be up to 50% loss in compressive strength of the subgrade within the uppermost layer of the material caused by freeze-thaw cycling.  相似文献   

7.
This paper presents details of a large field trial and some observations conducted to evaluate the practical efficiencies of geosynthetically reinforced asphalt pavements in Shanxi Province, China. Three glass-fiber grids (LB2000 II, TGG-8080, GGA 2021), one plastic grid (Tensar AR1), two geotextiles (nonwoven needle-punched and nonwoven heat-bonded), and one geocomposite (Tensar AR-G) application were selected for evaluation. These geosynthetics were installed in the interface between new asphalt pavement layers (APL) and new cement-stabilized gravel–sand base courses coated by emulsified asphalt or within new APL in the reconstruction of asphalt pavement sections (Program I), or in the interface between old APL and new overlay layers in the asphalt overlay pavement sections (Program II). In each program, reinforced sections with different geosynthetics were compared with each other and with nonreinforced sections to determine relative performance. Inspections after construction showed that the integrated damage ratio and deflection in the pavement sections reinforced with glass–fiber grids were less than other pavement sections. Furthermore, after about 4?years of service, glass-fiber grids were dug out and no breaking and node movement were discovered. Nevertheless, observations indicated that geosynthetics may not be effective, if bearing capacity of the base course/subgrade is inadequate, or if the overlay thickness is too thin, or if preconstruction repair of distressed old pavement is incomplete.  相似文献   

8.
Mechanistic-empirical pavement design guide for flexible pavements as per the AASHTO design guide requires characterization of subgrade soils using the resilient modulus (MR) property. This property, however, does not fully account for the plastic or permanent strain or rutting of subgrade soils, which often distress the overlying pavements. Soils such as silts exhibit moderate to high resilient moduli properties but they still undergo large permanent deformations under repeated loading. This explains the fallacy in the current pavement material characterization practice. A comprehensive research study was performed to measure permanent deformation properties of subgrade soils by subjecting various soils under repeated cycles of deviatoric loads. This paper describes test procedure followed and results obtained on three soils including clay, silt, and sandy soils. The influence of compaction moisture content, confining pressure, and deviatoric stresses applied on the measured permanent deformations of all three soils are addressed. A four-parameter permanent strain model formulation as a function of stress states in soils and the number of loading cycles was used to model and analyze the present test results. The model constants of all three soils were first determined and these results were used to explain the effects of various soil properties on permanent deformations of soils. Validation studies were performed to address the adequacy of the formulated model to predict rutting or permanent strains in soils.  相似文献   

9.
Degradation of a Granular Base under a Flexible Pavement: DEM Simulation   总被引:1,自引:0,他引:1  
Flexible pavements are composed by an asphalt concrete layer, granular base and subbase layers, and a natural subgrade. The granular materials forming part of the granular layers are subjected to static and dynamic loads during their engineering life. As a result of these loads particle crushing may occur depending on the strength of the particles forming the granular layers. Particle crushing is important since it is associated with several detrimental effects such as settlements and a reduction in hydraulic conductivity. A computer simulation using the discrete element method (DEM) is presented in order to understand and visualize how crushing initiates and develops inside a simulated pavement structure.  相似文献   

10.
“Underlying” Causes for Settlement of Bridge Approach Pavement Systems   总被引:1,自引:0,他引:1  
A comprehensive field study of 74 bridges in Iowa was conducted to characterize problems leading to poor performance of bridge approach pavement systems. Subsurface void development caused by water infiltration through unsealed expansion joints, collapse and erosion of the granular backfill, and poor construction practices were found to be the main contributing factors. To characterize the problem, International Roughness Index and profile measurements from several sites were used to show that approach pavement roughness is several times higher than the average roadway condition and are most severe at the abutment-to-approach pavement intersection and transverse expansion joints due to large (5–10?cm) joint widths. Further, a settlement time history was documented at one bridge site by measuring the approach slab pavement elevations periodically after completion of bridge construction, revealing a progressive settlement problem under the approach pavement. To better understand the void development under the approach pavement, laboratory compaction tests were performed on granular backfill materials from various bridge sites to quantify their saturated collapse potential in the postconstruction phase. These tests revealed collapse potential of backfill materials in the range of 5–18% (based on volume) with the high values for poorly graded sandy backfill materials, indicating significant settlement problems. Based on the research findings, some relatively simple design and construction modifications are suggested which could be used to alleviate field problems for similar bridge approach pavement systems.  相似文献   

11.
The potential use of the dynamic cone penetrometer (DCP) for evaluation of the pavement distress state is investigated. A model to predict the distress level of pavement layers using penetration rate (PR) values of the subgrade and aggregate base course (ABC) layers is proposed based on the coupled contribution of the subgrade and the ABC materials. The developed distress model is validated using field data from four test sites. The two sites with good condition rating values (equal to 4 and 3) are found to have an unconfined PR-ABC value <4 mm∕blow, a PR-subgrade value <25 mm∕blow, and an ABC layer thickness that exceeds 152 mm (6 in.). A discrepancy that seems to appear in the field data (a high field California bearing ratio value corresponding to a PR-ABC value >4 mm∕blow) is explained by the fact that field-measured California bearing ratio values for the ABC layer are affected by the strength of the underlying subgrade soils. This is especially observed in cases where the thickness of the ABC layer is <102 mm (4 in.). The framework of the established procedure can generally be used at other sites, properly taking into account differences in material properties.  相似文献   

12.
Fourteen Texas SPS-3 test sites were studied to determine the effectiveness of preventative maintenance treatments. These sections were built on four highway classifications (IH, US, SH, and FM) in different climates and with different levels of traffic and subgrade support. Almost all 14 SPS-3 sites were given preventative maintenance treatments (thin overlay, slurry seal, crack seal, and chip seal) in Fall 1990. The distress score concept used by the Texas Department of Transportation (TxDOT) was adopted in this study to judge the effectiveness of preventative maintenance treatments. TxDOT has used this concept since the early 1980s, though the utility factors have been revised few times. The distress score quantifies the visible surface wear due to traffic and environmental influences. Only very few sections experienced premature failures on the SPS-3 sites in Texas. In many cases, superior underlying pavement conditions have been found. The chip seal has the most sites in which it is rated the best performer. The chip seals performed well on a wide range of pavement conditions. In fact, chip seals have the highest distress score for both high and low traffic areas. When initial cost is considered, crack seal provides the best alternative for low traffic routes that have a sound underlying pavement structure. For high traffic routes, chip seal is a better choice. However, a thin overlay is the most effective for rut resistance. Since the thin overlay has the highest initial cost, it is best used on high traffic routes where rutting is a major concern. If rutting is not a concern, chip seal is the best choice for a high traffic area. The treatments applied to US84 sections were too late and did not reach seven years of life as normally was expected, which reconfirms that the timing for preventive maintenance treatment is very important.  相似文献   

13.
The Indiana Department of Transportation/Purdue University accelerated pavement testing (APT) facility has been utilized in a number of studies of hot mix asphalt (HMA) rutting performance. The benefit of using APT is that rutting performance can be established in a few days of testing. Finite element (FE) models have been developed for relating APT to in‐service pavement performance. Factors addressed in the models include pavement geometry, boundary conditions, materials, loads, test conditions, and construction variables. Determining the effects of these factors provides a means for better interpreting APT test results and HMA rutting performance. A detailed analysis using 3D and 2D FE has been made of tire/pavement contact pressure effects on rutting. The analyses include tread pattern and constant and varying contact pressure. A creep model is used to represent the HMA time‐dependent material behavior. Based on test data, the material constants in the creep model were back calculated. Results of the FE studies show that the creep model can successfully characterize pavement material behavior through a reasonable approximation of loading and other factors.  相似文献   

14.
Cold in-place recycling (CIR) is one of the most effective methods to rehabilitate asphalt pavements. In fact, most CIR roads have performed well at low cost in Iowa since the first CIR road was constructed in 1986. However, some CIR roads have reached failures earlier than their expected design lives because there is no design standard for designing CIR roads with a limited amount of past performance information. Some of the most prominent problems seemed to have come from selecting CIR in areas where there are poor subgrades. Therefore, it is critical to collect CIR performance data along with falling weight deflectometer (FWD) data in order to develop performance models. The main purpose of this paper is to document that effort. The performance models were developed on the basis of historical data collected from CIR roads in Iowa. First, an inventory of CIR roads was created which includes construction information, subgrade and base characteristics, and traffic levels. In consideration of pavement age, level of traffic, and subgrade condition, 26 test sections were selected from the inventory of CIR roads and pavement surface distress surveys were conducted on these roads using an automated image collection system. Distress data were then compiled to compute pavement condition index (PCI) for each test section. FWD data were collected from each test section to determine its relative soil support condition. Finally, to determine their long-term performance, the PCI values were plotted against the pavement age for each group of pavements categorized by their soil support conditions and traffic levels. Overall, it can be concluded that the CIR roads in Iowa, all under traffic level of annual average daily traffic of 2,000, have performed very well and predicted to last up to 25 years before reaching the poor condition (PCI = 40) when the pavements are to be rehabilitated. The CIR roads with a good subgrade support, however, are predicted to last up to 35 years.  相似文献   

15.
Research in accelerated pavement testing (APT) facilities has traditionally focused on the pavement performance such as rutting and fatigue cracking, but documentation on construction management and information of the actual pavement construction quality is limited. There are typically four critical factors that need to be considered to achieve the best possible outcome in construction: cost, schedule, construction process, and quality control, and management. With the objective of developing guidelines for planning and executing construction of a small-scale APT facility, this paper presents a case study documenting and evaluating the construction process and construction management efforts of two sensor-instrumented hot mix asphalt pavement test sections built in a small-scale APT facility. The focus of the experiment was to study bottom-up fatigue cracking of the flexible pavement structure. The presented information and lessons learned serve as a template and guide for agencies pursuing this type of research and pavement construction.  相似文献   

16.
One of the important components of a flexible pavement structure is granular material layers. Unsaturated granular pavement materials (UGPMs) in these layers influence stresses and strains throughout the pavement structure, and have a large effect on asphalt concrete fatigue and pavement rutting (two of the primary failure mechanisms for flexible pavements). The behavior of UGPMs is dependent on water content, but this effect has been traditionally difficult to quantify using either empirical or mechanistic methods. This paper presents a practical mechanistic framework for determining the behavior of UGPMs within the range of water contents, densities, and stress states likely to be encountered under field conditions. Both soil suction and generated pore pressures are determined and compared to confinement under typical field loading conditions. The framework utilizes a simple soil suction model that has three density-independent parameters, and can be determined using conventional triaxial equipment that is available in many pavement engineering laboratories.  相似文献   

17.
A finite-element model was developed using ABAQUS software package to investigate the effect of placing geosynthetic reinforcement within the base course layer on the response of a flexible pavement structure. A critical state two-surface constitutive model was first modified to represent the behavior of base course materials under the unsaturated field conditions. The modified model was then implemented into ABAQUS through a user defined subroutine, UMAT. The implemented model was validated using the results of laboratory triaxial tests. Finite-element analyses were then conducted on different unreinforced and geosynthetic reinforced flexible pavement sections. The results of this study demonstrated the ability of the modified critical state two-surface constitutive model to predict, with good accuracy, the response of the considered base course material at its optimum field conditions when subjected to cyclic as well as static loads. The results of the finite-element analyses showed that the geosynthetic reinforcement reduced the lateral strains within the base course and subgrade layers. Furthermore, the inclusion of the geosynthetic layer resulted in a significant reduction in the vertical and shear strains at the top of the subgrade layer. The improvement of the geosynthetic layer was found to be more pronounced in the development of the plastic strains rather than the resilient strains. The reinforcement benefits were enhanced as its elastic modulus increased.  相似文献   

18.
This article deals with the structural design of flexible pavements reinforced by steel nettings. The purpose is to estimate the gain in base material obtained by using such systems. Most of the current pavement design methods are modeling the reinforcing system as a continuous layer. This approach is leading to cost‐ineffective solutions. To overcome these present limitations, a three‐dimensional (3D) finite element modeling (FEM) approach is suggested. The application of 3D‐FEM allows simulation of the real shape of steel reinforcing nettings. To cover as many practical cases as possible, various pavements are considered, defined by various base thicknesses and soil bearing capacities. Structures with and without base reinforcement system are compared in terms of asphalt fatigue, rutting, and deflection performance. These comparisons make it possible to draw several design charts for various asphalt thicknesses and soil bearing capacities. Such design charts will avoid time‐consuming computations with 3D‐FEM applications and provide project engineers with more cost‐effective solutions.  相似文献   

19.
Seasonal deformation of unsurfaced roads was observed over several years and was studied using pavement deterioration models and finite-element analysis. The Mathematical Model of Pavement Performance is a model designed for pavement deterioration prediction and was successfully used for seasonal deterioration modeling because of its flexibility in defining the pavement structure, properties, and seasonal impact. However, these types of models are designed for highways and are somewhat limited in soils characterization and manipulation of the forces at the road–tire interface. Therefore, a three-dimensional dynamic finite-element model of a wheel rolling over soil was applied to simulate local vehicle traffic on a secondary unpaved road. These simulations were used to study the effects of vehicle speed, load, suspension system, wheel torque, and wheel slip on rutting and washboard formation. Modeling results are compared to field measurements and observations.  相似文献   

20.
The performance of cold in-place recycled asphalt roads in Iowa is systematically reviewed. Out of 97 recycled roads, a sample of 18 roads was selected that had various traffic counts, ages, geographic regions, subgrade conditions, and hot mix asphalt overlay characteristics. The performance was rated both quantitatively and qualitatively. The results indicate that the roads are performing well. It is apparent that cold in-place recycled asphalt is effective in mitigating reflection cracks, and few problems with rutting were observed. Subgrade instability is found to be the only cause of complete failure in a recycling project. The expected service life, based on the first 10 years of performance, is predicted to be 15–26 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号