首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of a new structural material, namely, textile-reinforced mortar (TRM), was investigated experimentally in this study as a means of confining oldtype reinforced concrete (RC) columns with limited capacity due to bar buckling or due to bond failure at lap splice regions. Comparisons with equal stiffness and strength fiber-reinforced polymer (FRP) jackets allow for the evaluation of the effectiveness of TRM versus FRP. Tests were carried out on nearly full scale nonseismically detailed RC columns subjected to cyclic uniaxial flexure under constant axial load. Ten cantilevertype specimens with either continuous or lap-spliced deformed longitudinal reinforcement at the floor level were constructed and tested. Experimental results indicated that TRM jacketing is quite effective as a means of increasing the cyclic deformation capacity of oldtype RC columns with poor detailing, by delaying bar buckling and by preventing splitting bond failures in columns with lap-spliced bars. Compared with their FRP counterparts, the TRM jackets used in this study were found to be equally effective in terms of increasing both the strength and deformation capacity of the retrofitted columns. From the response of specimens tested in this study, it can be concluded that TRM jacketing is an extremely promising solution for the confinement of reinforced concrete columns, including poorly detailed ones with or without lap splices in seismic regions.  相似文献   

2.
Numerous recent research findings evidenced the success of retrofitting existing RC columns using fiber-reinforced plastic (FRP) jacketing. However, little is known about the residual performance of FRP-retrofitted RC columns following limited seismic damage. In this paper, the residual performance of FRP-retrofitted columns damaged after simulated seismic loading is studied. Eight model columns with a shear aspect ratio of 5.0 were tested first under cyclic lateral force and a constant axial load equal to 20% of the column gross axial load capacity. The main parameters considered were the type of FRP jacket and peak drift ratio where the lateral loading was interrupted. Glass fiber-reinforced plastic (GFRP) and carbon fiber-reinforced plastic (CFRP) were both used for retrofitting. Five of the model columns were subjected to long-term axial loading after being subjected to limited damage by lateral cyclic loading. From the results of long-term loading test, it was found that FRP-retrofitted columns had much smaller creep deformation than the counterpart as-built model. The deformation of retrofitted columns under long-term axial loading depended on the previous damage intensity and the modulus of elasticity of FRP. The effective creep Poisson’s ratios of the retrofitted columns were much smaller than the as-built column but identical for GFRP and CFRP retrofitted columns. Under the testing conditions of this study, the long-term axial deformation of retrofitted columns tends to be sufficiently stable, despite the simulated earthquake damage.  相似文献   

3.
The behavior of seven one-half scale masonry specimens before and after retrofitting using fiber-reinforced polymer (FRP) is investigated. Four walls were built using one-half scale hollow clay masonry units and weak mortar to simulate walls built in central Europe in the mid-20th century. Three walls were first tested as unreinforced masonry walls; then, the seismically damaged specimens were retrofitted using FRPs. The fourth wall was directly upgraded after construction using FRP. Each specimen was retrofitted on the entire surface of a single side. All the specimens were tested under constant gravity load and incrementally increasing in-plane loading cycles. The tested specimens had two effective moment/shear ratio, namely, 0.5 and 0.7. The key parameter was the amount of FRP axial rigidity, which is defined as the amount of FRP reinforcement ratio times its E modulus. The single-side retrofitting/upgrading significantly improved the lateral strength, stiffness, and energy dissipation of the test specimens. The increase in the lateral strength was proportional to the amount of FRP axial rigidity. However, using high amount of FRP axial rigidity led to very brittle failure. Finally, simple existing analytical models estimated the ultimate lateral strengths of the test specimens reasonably well.  相似文献   

4.
The objective of this research is to investigate the seismic performance of as-built, retrofitted, and repaired hollow bridge columns with insufficient shear strength. Two as-built full-scale columns were first tested and repaired using carbon-fiber-reinforced polymer composites (CFRP) jackets and dog-bone-shaped bars and then retested. Another two columns having the same reinforcement as the as-built columns were retrofitted with CFRP jackets. In addition to the tests, the repairability of the failed hollow columns was investigated by analytical evaluation. The test results and analysis of the retrofitted columns showed that CFRP composites can effectively strengthen shear-critical hollow bridge columns and can successfully transform the failure mode from shear to flexure. The test results of the repaired circular columns show that dog-bone-shaped bars successfully repaired the flexural damage caused by the fractured longitudinal bars.  相似文献   

5.
This paper presents test results of six specimens representing older bridge columns with inadequate reinforcement detailing consisting of short lap splices at the base and widely spaced transverse reinforcement. Four of these specimens were rehabilitated using fiber-reinforced polymer (FRP) jackets of two different composite materials (carbon and aramid) to avoid premature failure of the lapped bars after a limited number of postyield cycles. The test results indicate that thin FRP jackets can be used to avoid failure of short lap splices at moderate displacement ductilities. Displacement capacities consistent with expected demands in regions of moderate or low seismicity were achieved after jacket retrofitting. The hysteretic behavior of rehabilitated columns was assessed with emphasizing issues related to variation of stiffness and damping ratio as a function of ductility demand for this class of columns. Equations that account for the effect of axial load level on estimates of effective stiffness and damping as a function of displacement ductility are proposed for this class of columns.  相似文献   

6.
The effectiveness of fiber-reinforced polymer (FRP) and textile-reinforced mortar (TRM) jackets was investigated experimentally and analytically in this study to confine old-type reinforced concrete (RC) columns with limited capacity because of bond failure at lap-splice regions. The local bond strength between lap-spliced bars and concrete was measured experimentally along the lap-splice region of six full-scale RC columns subjected to cyclic uniaxial flexure under constant axial load. The bond strength of the two column specimens tested without retrofitting was found to be in good agreement with the predictions given by two existing bond models. These models were modified to account for the contribution of composite material jacketing to the bond resistance between lap-spliced bars and concrete. The effectiveness of FRP and TRM jackets against splitting at lap splices was quantified as a function of jacket properties and geometry as well as in terms of the jacket effective strain, which was found to depend on the ratio of lap-splice length to bar diameter. Consequently, simple equations for calculating the bond strength of lap splices in members confined with composite materials (FRP or TRM) are proposed.  相似文献   

7.
This paper presents the results of an investigation of the monotonic and fatigue behavior of one-way and two-way reinforced concrete slabs strengthened with carbon fiber-reinforced polymer (CFRP) materials. The five one-way slab specimens were removed from a decommissioned bridge in South Carolina. Three of the slabs were retrofitted with CFRP strips bonded to their soffits and the other two served as unretrofit, control specimens. Of the five one-way slab specimens, one unretrofit and two retrofit slabs were tested monotonically until failure. The remaining two specimens, one unretrofit and one retrofit, were tested under cyclic (fatigue) loading until failure. In addition, six half-scale, two-way slab specimens were constructed to represent a full-scale prototype of a highway bridge deck designed using the empirical requirements of the AASHTO LRFD Bridge Design Manual. Of the six square slabs, two were unretrofitted and served as the control specimens, two were retrofitted using CFRP strips bonded to their soffits making a grid pattern, and two were retrofitted with a preformed CFRP grid material bonded to their soffit. Three slabs, one unretrofit, one CFRP strip, and one CFRP grid retrofitted, were tested monotonically until failure and the remaining three slabs were tested under cyclic (fatigue) loading until failure.  相似文献   

8.
The results of a research program that evaluated the confinement effectiveness of the type and the amount of fiber-reinforced polymer (FRP) used to retrofit circular concrete columns are presented. A total of 17 circular concrete columns were tested under combined lateral cyclic displacement excursions and constant axial load. It is demonstrated that a high axial load level has a detrimental effect and that a large aspect ratio has a positive effect on drift capacity. Compared with the performance of columns that are monotonically loaded until failure, three cycles of every displacement excursion significantly affect drift capacity. The energy dissipation capacity is controlled by FRP jacket confinement stiffness, especially under a high axial load level. The fracture strain of FRP material has no significant impact on the drift capacity of retrofitted circular concrete columns as long as the same confining pressure is provided, which differs from the common opinion that a larger FRP fracture strain is advantageous in seismic retrofitting. The amount of confining FRP greatly affects the length of the plastic hinge region and the drift capacity of FRP-retrofitted columns. A further increase in confinement after a critical value causes a reduction in the deformation capacity of the columns.  相似文献   

9.
10.
This paper summarizes comprehensive experimental studies on scaled models of squat bridge columns repaired and retrofitted with advanced composite-material jackets. In the experimental program, a total of 14 half-scale squat circular and rectangular reinforced concrete columns were tested under fully reversed cyclic shear in a double bending configuration. In order to provide a basis for comparison, a total of three as-built columns were tested. Another 10 column samples were tested after being retrofitted with different composite jacket systems. One circular as-built column was repaired after failure. The repair process involved both crack injection as well as addition of carbon/epoxy composite jacket. The repaired column was then retested and evaluated. Experimental results showed that all as-built columns developed an unstable behavior and failed in brittle shear mode. The common failure mode for all retrofitted samples was due to flexure with significant improvement in the column ductility. The repaired column demonstrated ductility enhancement over the as-built sample.  相似文献   

11.
This paper presents an inclusive testing program conducted on scaled models of reinforced concrete (RC) bridge columns with insufficient lap-splice length. Thirteen half-scale circular and square column samples were tested in flexure under lateral cyclic loading. Three columns were tested in the as-built configuration whereas ten samples were tested after being retrofitted with different composite-jacket systems. A brittle failure was observed in the as-built samples due to bond deterioration of the lap-spliced longitudinal reinforcement. The jacketed circular columns demonstrated a significant improvement in their cyclic performance. Yet, tests conducted on square jacketed columns showed a limited improvement in clamping on the lap-splice region and for enhancing the ductility of the column.  相似文献   

12.
The opportunities provided by the use of modern repair schemes for the seismic retrofit of existing RC structures were assessed on a comparative experimental study of carbon fiber-reinforced polymer (CFRP) and more-conventional seismic retrofitting techniques for the repair of reinforced concrete members and masonry walls of bare and infilled RC frames, respectively, damaged because of cyclic loading. Four 1-story, one-bay, one-third-scale frame specimens are tested under cyclic horizontal loading up to a drift level of 4%—two bare frames with spirals or stirrups as shear reinforcement, respectively, and two infilled frames with weak infills and spirals or stirrups as shear reinforcement, respectively. The applied repair techniques are mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies or on the additional use of CFRP plates to the surfaces of the damaged structural RC members as external reinforcement and the use of a polymer modified cement mortar or two-sided diagonal CFRP fabrics for the damaged infill masonry walls. After repair, specimens were retested in the same way. Conclusions concerning the comparison of the effectiveness between conventional and CFRP seismic retrofitting applied techniques on the basis of maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens are drawn.  相似文献   

13.
This paper presents experimental and analytical work conducted to explore the feasibility of using an innovative technique for seismic retrofitting of RC bridge columns using shape memory alloys (SMAs) spirals. The high recovery stress associated with the shape recovery of SMAs is being sought in this study as an easy and reliable method to apply external active confining pressure on RC bridge columns to improve their ductility. Uniaxial compression tests of concrete cylinders confined with SMA spirals show a significant improvement in the concrete strength and ductility even under small confining pressure. The experimental results are used to calibrate the concrete constitutive model used in the analytical study. Analytical models of bridge columns retrofitted with SMA spirals and carbon fiber-reinforced polymer (CFRP) sheets are studied under displacement-controlled cyclic loading and a suite of strong earthquake records. The analytical results proves the superiority of the proposed technique using SMA spirals to CFRP sheets in terms of enhancing the strength and effective stiffness and reducing the concrete damage and residual drifts of retrofitted columns.  相似文献   

14.
The results of an analytical and experimental study on the behavior of reinforced concrete T-beams retrofitted with carbon-fiber-reinforced polymer (CFRP) plates are discussed in this paper. CFRP plates were bonded to the underside of the beams with the main objective of increasing the service life load capacity. A test series comprising a prototype beam and six 5-m-long simply supported beams were tested under repeated cyclic and monotonic load conditions to failure. Particular emphasis was given to the development of the CFRP plates and to the behavior of the service and ultimate load ranges. This paper examines variables that have not previously been considered such as the use of staggered plates and the use of plates on beam with curtailed longitudinal steel reinforcement. The effect of diagonal tension cracking is also considered in this study by adapting a simple version of the modified compression field theory into the discrete element method. An important conclusion in this paper is that staggered CFRP plates can be used in lieu of full-length plates when considering flexural strengthening of beams.  相似文献   

15.
This paper presents the results of an experimental investigation studying the effect of retrofitting interior slab–column connections against punching shear failure with externally bonded carbon fiber reinforced polymer (CFRP) strips. Six full-scale, 2000?mm-square×150-mm-thick slab specimens were constructed. The effect of varying the CFRP strengthening amount and configuration on the load-carrying capacity of the slab specimens was investigated. Specimens were supported along their edges and tested to failure. Strengthened slabs showed an increase in stiffness between 29 and 60% and in punching capacity between 6 and 16% with respect to the control unstrengthened slab. An analytical model was refined to predict the punching shear capacity of the specimens strengthened with CFRP strips. The model takes into account both the configuration and amount of CFRP strips. The proposed model shows good agreement with the experimental results.  相似文献   

16.
This paper presents the experimental results of the first phase of a study undertaken at the American University of Beirut to examine the effectiveness of fiber reinforced polymer (FRP) wraps to confine steel reinforcement in a tension lap splice region anchored in high-strength reinforced-concrete beams. Seven beam specimens were constructed. The specimens were reinforced on the tension side with three deformed bars spliced at midspan. The splice region was devoid of any transverse reinforcement to allow a full examination of the FRP wrap contribution. Glass fiber reinforced polymer (GFRP) sheets were used. The main test variables were the GFRP configuration in the splice region (one strip, two strips, or a continuous strip), and the number of layers of the GFRP wraps placed around the splice region (one layer or two layers). All GFRP wraps were U-shaped. Except for the epoxy adhesive, no other anchorage mechanism or bonding procedure was applied for the GFRP wraps on the concrete beam. Following the application of the GFRP wraps, the beams were tested in positive bending. The test results demonstrated that GFRP wraps were effective in enhancing the bond strength and ductility of failure mode of the tension lap splices, especially when continuous strips were applied over the splice region.  相似文献   

17.
This paper presents results of a comprehensive experimental investigation on the behavior of axially loaded short rectangular columns that have been strengthened with carbon fiber-reinforced polymer (CFRP) wrap. Six series, a total of 90 specimens, of uniaxial compression tests were conducted on rectangular and square short columns. The behavior of the specimens in the axial and transverse directions is investigated. The parameters considered in this study are (1) the concrete strength; (2) the aspect ratio of the cross section; and (3) the number of CFRP layers. The findings of this research can be summarized as follows: The CFRP wrapping enhances the compressive strength and the ductility of both square and rectangular columns, but to a lesser degree than that of circular columns. The ultimate strength and the ductility of the CFRP confined concrete increase with increasing number of confining layers. The increase in strength and ductility is more significant for lower strength concrete, representing poor or degraded concrete, than for normal-to-high strength concrete; that is, the maximum gain in strength that can be achieved for 3 ksi concrete wrapped columns is approximately 90%, as compared to only 30% for 6 ksi concrete wrapped columns. The CFRP confining jacket must be sufficiently stiff to develop appropriate confining forces at relatively low axial strain levels. The gain in compressive strength obtained by the CFRP confined concrete depends mainly on the relative stiffness of the CFRP jacket to the axial stiffness of the column.  相似文献   

18.
This paper reports on the third phase of a multiphase study undertaken at the American University of Beirut (AUB) to examine the effect of fiber-reinforced polymer (FRP) sheets in confining tension lap splice regions in reinforced concrete beams. Results of the first two phases showed that glass and carbon fiber-reinforced polymer (GFRP and CFRP) sheets were effective in increasing the bond strength and improving the ductility of the mode of failure of tension lap splices in high-strength concrete (HSC) beams with nominal concrete strength of 70 MPa. The experimental results of the two phases were used to propose a new FRP confinement parameter, Ktr,f, that accounts for the bond strength contribution of FRP sheets wrapping tension lap splice regions in HSC beams. In this third phase of the AUB study, the trend of the results of phases 1 and 2 and the validity of the analytical model proposed were verified if normal-strength concrete (NSC) is used instead of HSC. Seven beams with nominal concrete strength of 27.58 MPa (4 ksi) were tested in positive bending. Each beam was designed with a tension lap splice in a constant moment region in the midspan of the beam. The main test variables were the configuration (1 strip, 2 strips, or a continuous strip) and the number of layers (1 layer or 2 layers) of the CFRP sheets wrapping the splice region. The test results demonstrated that CFRP sheets were effective in enhancing the bond strength and ductility of failure mode of tension lap splices in NSC in a very similar way to HSC. In addition, the FRP confinement index proposed earlier for HSC was proven to be valid in the case of NSC.  相似文献   

19.
The research presented in this study involves full-scale experimental evaluation of carbon fiber-reinforced polymer (CFRP) rehabilitation for existing beam-column joints designed for gravity load with common pre-1970s deficient reinforcement details when subjected to cyclic loading. Numerous studies have demonstrated effectiveness of externally bonded fiber-reinforced polymer (FRP) materials for retrofitting the deteriorating RC structures. Although these materials are widely used in bridges, their applications in buildings have been somewhat limited. In particular, the experimental investigations on external FRP retrofit of deficient beam-column joints have not thoroughly been investigated and they are mainly on scaled-down specimens. The failure of these subassemblies, which possess lack of shear reinforcement within the joint core and shortly embedded positive beam reinforcement, would possibly result in catastrophic collapse of reinforced concrete frame structure during an earthquake event. Recognizing the urgent need to upgrade these structural subassemblies, the current investigation uses CFRP retrofit techniques to enhance the performance of such deficient joints. Experimental variables studied entail the developed CFRP retrofit configurations, and magnitude of the applied column axial load. Comparative analysis of the lateral loads versus drift hysteresis loops, stiffness degradation, and total dissipated energy curves of three as-built and three corresponding CFRP-retrofitted RC joints revealed that significant improvement in the shear capacity of the upgraded joints occurred. More importantly, the slippage of short embedded beam positive reinforcement into the joint was substantially controlled due to the developed CFRP retrofit. The results demonstrate the effectiveness of CFRP retrofit configurations in enhancing the structural performance of actual size connections.  相似文献   

20.
The efficacy of fiber-reinforced polymer (FRP) confinement as a means of repairing/strengthening reinforced concrete members with nonductile details is explored in this paper with particular emphasis on the interaction between jacket and the embedded longitudinal compression reinforcement at the onset of bar buckling. To this end, a total of 27 short prismatic specimens were tested to failure under concentric compression subsequent to application of FRP jackets; four additional specimens were tested as controls. Specimens had a square cross section and most were detailed according to former practices with the exception of few specimens that contained the minimum transverse reinforcement as specified by modern provisions. Parameters of the experimental study were the extent of initial damage prior to jacketing, the jacket material, and the number of layers. Response variables included ductility at failure, deformation capacity, strength increase, and mode of failure of the repaired/strengthened member. Confinement effectiveness was quantified using the degree of lateral dilation as the primary performance index. Deformation capacity as limited by embedded longitudinal bar buckling and jacket rupture/debonding strains was evaluated from the experimental results and analytical considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号